Evaluate
-4\sqrt{3}\approx -6.92820323
Share
Copied to clipboard
-1+\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right)-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
Calculate 1 to the power of 2020 and get 1.
-1+\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-1+3-\left(\sqrt{2}\right)^{2}-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
The square of \sqrt{3} is 3.
-1+3-2-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
The square of \sqrt{2} is 2.
-1+1-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
Subtract 2 from 3 to get 1.
-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
Add -1 and 1 to get 0.
-\sqrt{8}
Rewrite the division of square roots \frac{\sqrt{8}}{\sqrt{\frac{1}{6}}} as the square root of the division \sqrt{\frac{8}{\frac{1}{6}}} and perform the division.
-2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}