Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-1+\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right)-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
Calculate 1 to the power of 2020 and get 1.
-1+\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-1+3-\left(\sqrt{2}\right)^{2}-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
The square of \sqrt{3} is 3.
-1+3-2-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
The square of \sqrt{2} is 2.
-1+1-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
Subtract 2 from 3 to get 1.
-\frac{\sqrt{8}}{\sqrt{\frac{1}{6}}}
Add -1 and 1 to get 0.
-\sqrt{8}
Rewrite the division of square roots \frac{\sqrt{8}}{\sqrt{\frac{1}{6}}} as the square root of the division \sqrt{\frac{8}{\frac{1}{6}}} and perform the division.
-2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.