Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\frac{\left(3-\sqrt{5}\right)^{2}}{2^{2}}+2\times \frac{3-\sqrt{5}}{2}+3
To raise \frac{3-\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
-\frac{\left(3-\sqrt{5}\right)^{2}}{2^{2}}+3-\sqrt{5}+3
Cancel out 2 and 2.
-\frac{\left(3-\sqrt{5}\right)^{2}}{2^{2}}+6-\sqrt{5}
Add 3 and 3 to get 6.
-\frac{\left(3-\sqrt{5}\right)^{2}}{2^{2}}+\frac{\left(6-\sqrt{5}\right)\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6-\sqrt{5} times \frac{2^{2}}{2^{2}}.
\frac{-\left(3-\sqrt{5}\right)^{2}+\left(6-\sqrt{5}\right)\times 2^{2}}{2^{2}}
Since -\frac{\left(3-\sqrt{5}\right)^{2}}{2^{2}} and \frac{\left(6-\sqrt{5}\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
-\frac{9-6\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}+6-\sqrt{5}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{5}\right)^{2}.
-\frac{9-6\sqrt{5}+5}{2^{2}}+6-\sqrt{5}
The square of \sqrt{5} is 5.
-\frac{14-6\sqrt{5}}{2^{2}}+6-\sqrt{5}
Add 9 and 5 to get 14.
-\frac{14-6\sqrt{5}}{4}+6-\sqrt{5}
Calculate 2 to the power of 2 and get 4.
-\frac{14-6\sqrt{5}}{4}+\frac{4\left(6-\sqrt{5}\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6-\sqrt{5} times \frac{4}{4}.
\frac{-\left(14-6\sqrt{5}\right)+4\left(6-\sqrt{5}\right)}{4}
Since -\frac{14-6\sqrt{5}}{4} and \frac{4\left(6-\sqrt{5}\right)}{4} have the same denominator, add them by adding their numerators.
\frac{-14+6\sqrt{5}+24-4\sqrt{5}}{4}
Do the multiplications in -\left(14-6\sqrt{5}\right)+4\left(6-\sqrt{5}\right).
\frac{10+2\sqrt{5}}{4}
Do the calculations in -14+6\sqrt{5}+24-4\sqrt{5}.