Evaluate
-2\sqrt{3}\approx -3.464101615
Share
Copied to clipboard
\left(-\sqrt{\frac{20+4}{5}}\right)\sqrt{\frac{2\times 2+1}{2}}
Multiply 4 and 5 to get 20.
\left(-\sqrt{\frac{24}{5}}\right)\sqrt{\frac{2\times 2+1}{2}}
Add 20 and 4 to get 24.
\left(-\frac{\sqrt{24}}{\sqrt{5}}\right)\sqrt{\frac{2\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{24}{5}} as the division of square roots \frac{\sqrt{24}}{\sqrt{5}}.
\left(-\frac{2\sqrt{6}}{\sqrt{5}}\right)\sqrt{\frac{2\times 2+1}{2}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\left(-\frac{2\sqrt{6}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)\sqrt{\frac{2\times 2+1}{2}}
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(-\frac{2\sqrt{6}\sqrt{5}}{5}\right)\sqrt{\frac{2\times 2+1}{2}}
The square of \sqrt{5} is 5.
\left(-\frac{2\sqrt{30}}{5}\right)\sqrt{\frac{2\times 2+1}{2}}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\left(-\frac{2\sqrt{30}}{5}\right)\sqrt{\frac{4+1}{2}}
Multiply 2 and 2 to get 4.
\left(-\frac{2\sqrt{30}}{5}\right)\sqrt{\frac{5}{2}}
Add 4 and 1 to get 5.
\left(-\frac{2\sqrt{30}}{5}\right)\times \frac{\sqrt{5}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
\left(-\frac{2\sqrt{30}}{5}\right)\times \frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(-\frac{2\sqrt{30}}{5}\right)\times \frac{\sqrt{5}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\left(-\frac{2\sqrt{30}}{5}\right)\times \frac{\sqrt{10}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{-2\sqrt{30}\sqrt{10}}{5\times 2}
Multiply -\frac{2\sqrt{30}}{5} times \frac{\sqrt{10}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\sqrt{10}\sqrt{30}}{5}
Cancel out 2 in both numerator and denominator.
\frac{-\sqrt{10}\sqrt{10}\sqrt{3}}{5}
Factor 30=10\times 3. Rewrite the square root of the product \sqrt{10\times 3} as the product of square roots \sqrt{10}\sqrt{3}.
\frac{-10\sqrt{3}}{5}
Multiply \sqrt{10} and \sqrt{10} to get 10.
-2\sqrt{3}
Divide -10\sqrt{3} by 5 to get -2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}