Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(-\sqrt{\frac{20+4}{5}}\right)\sqrt{\frac{2\times 2+1}{2}}
Multiply 4 and 5 to get 20.
\left(-\sqrt{\frac{24}{5}}\right)\sqrt{\frac{2\times 2+1}{2}}
Add 20 and 4 to get 24.
\left(-\frac{\sqrt{24}}{\sqrt{5}}\right)\sqrt{\frac{2\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{24}{5}} as the division of square roots \frac{\sqrt{24}}{\sqrt{5}}.
\left(-\frac{2\sqrt{6}}{\sqrt{5}}\right)\sqrt{\frac{2\times 2+1}{2}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\left(-\frac{2\sqrt{6}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)\sqrt{\frac{2\times 2+1}{2}}
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(-\frac{2\sqrt{6}\sqrt{5}}{5}\right)\sqrt{\frac{2\times 2+1}{2}}
The square of \sqrt{5} is 5.
\left(-\frac{2\sqrt{30}}{5}\right)\sqrt{\frac{2\times 2+1}{2}}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\left(-\frac{2\sqrt{30}}{5}\right)\sqrt{\frac{4+1}{2}}
Multiply 2 and 2 to get 4.
\left(-\frac{2\sqrt{30}}{5}\right)\sqrt{\frac{5}{2}}
Add 4 and 1 to get 5.
\left(-\frac{2\sqrt{30}}{5}\right)\times \frac{\sqrt{5}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
\left(-\frac{2\sqrt{30}}{5}\right)\times \frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(-\frac{2\sqrt{30}}{5}\right)\times \frac{\sqrt{5}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\left(-\frac{2\sqrt{30}}{5}\right)\times \frac{\sqrt{10}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{-2\sqrt{30}\sqrt{10}}{5\times 2}
Multiply -\frac{2\sqrt{30}}{5} times \frac{\sqrt{10}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\sqrt{10}\sqrt{30}}{5}
Cancel out 2 in both numerator and denominator.
\frac{-\sqrt{10}\sqrt{10}\sqrt{3}}{5}
Factor 30=10\times 3. Rewrite the square root of the product \sqrt{10\times 3} as the product of square roots \sqrt{10}\sqrt{3}.
\frac{-10\sqrt{3}}{5}
Multiply \sqrt{10} and \sqrt{10} to get 10.
-2\sqrt{3}
Divide -10\sqrt{3} by 5 to get -2\sqrt{3}.