Verify
false
Share
Copied to clipboard
-4\sqrt[3]{8}+16\times 4+1=-4\left(-2\right)+4\times 27^{\frac{1}{3}}
Multiply both sides of the equation by 4.
-4\times 2+16\times 4+1=-4\left(-2\right)+4\times 27^{\frac{1}{3}}
Calculate \sqrt[3]{8} and get 2.
-8+16\times 4+1=-4\left(-2\right)+4\times 27^{\frac{1}{3}}
Multiply -4 and 2 to get -8.
-8+64+1=-4\left(-2\right)+4\times 27^{\frac{1}{3}}
Multiply 16 and 4 to get 64.
56+1=-4\left(-2\right)+4\times 27^{\frac{1}{3}}
Add -8 and 64 to get 56.
57=-4\left(-2\right)+4\times 27^{\frac{1}{3}}
Add 56 and 1 to get 57.
57=8+4\times 27^{\frac{1}{3}}
Multiply -4 and -2 to get 8.
57=8+4\times 3
Calculate 27 to the power of \frac{1}{3} and get 3.
57=8+12
Multiply 4 and 3 to get 12.
57=20
Add 8 and 12 to get 20.
\text{false}
Compare 57 and 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}