Solve for a
a=\left(\sqrt{b}+4\right)^{2}
b\geq 0
Solve for b
b=\left(-\sqrt{a}+4\right)^{2}
a\geq 0\text{ and }-\left(-\sqrt{a}+4\right)\geq 0
Solve for a (complex solution)
a=\left(\sqrt{b}+4\right)^{2}
arg(\sqrt{b}+4)<\pi
Solve for b (complex solution)
b=\left(-\sqrt{a}+4\right)^{2}
a=16\text{ or }arg(-\sqrt{a}+4)\geq \pi
Share
Copied to clipboard
4-\sqrt{a}=-\sqrt{b}
Swap sides so that all variable terms are on the left hand side.
-\sqrt{a}=-\sqrt{b}-4
Subtract 4 from both sides.
\frac{-\sqrt{a}}{-1}=\frac{-\sqrt{b}-4}{-1}
Divide both sides by -1.
\sqrt{a}=\frac{-\sqrt{b}-4}{-1}
Dividing by -1 undoes the multiplication by -1.
\sqrt{a}=\sqrt{b}+4
Divide -\sqrt{b}-4 by -1.
a=\left(\sqrt{b}+4\right)^{2}
Square both sides of the equation.
\frac{-\sqrt{b}}{-1}=\frac{-\sqrt{a}+4}{-1}
Divide both sides by -1.
\sqrt{b}=\frac{-\sqrt{a}+4}{-1}
Dividing by -1 undoes the multiplication by -1.
\sqrt{b}=\sqrt{a}-4
Divide 4-\sqrt{a} by -1.
b=\left(\sqrt{a}-4\right)^{2}
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}