Evaluate
-6\sqrt{2}-6\sqrt{3}\approx -18.87758622
Share
Copied to clipboard
\frac{-\sqrt{6}}{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-\sqrt{6}}{\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}}
The square of \sqrt{2} is 2.
\frac{-\sqrt{6}}{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-\sqrt{6}}{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{-\sqrt{6}}{\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{\sqrt{3}}{3} times \frac{2}{2}.
\frac{-\sqrt{6}}{\frac{3\sqrt{2}-2\sqrt{3}}{6}}
Since \frac{3\sqrt{2}}{6} and \frac{2\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-\sqrt{6}\right)\times 6}{3\sqrt{2}-2\sqrt{3}}
Divide -\sqrt{6} by \frac{3\sqrt{2}-2\sqrt{3}}{6} by multiplying -\sqrt{6} by the reciprocal of \frac{3\sqrt{2}-2\sqrt{3}}{6}.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}
Rationalize the denominator of \frac{\left(-\sqrt{6}\right)\times 6}{3\sqrt{2}-2\sqrt{3}} by multiplying numerator and denominator by 3\sqrt{2}+2\sqrt{3}.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Consider \left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{9\times 2-\left(-2\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{18-\left(-2\sqrt{3}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{18-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{18-4\left(\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{18-4\times 3}
The square of \sqrt{3} is 3.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{18-12}
Multiply 4 and 3 to get 12.
\frac{\left(-\sqrt{6}\right)\times 6\left(3\sqrt{2}+2\sqrt{3}\right)}{6}
Subtract 12 from 18 to get 6.
\left(-\sqrt{6}\right)\left(3\sqrt{2}+2\sqrt{3}\right)
Cancel out 6 and 6.
3\left(-\sqrt{6}\right)\sqrt{2}+2\left(-\sqrt{6}\right)\sqrt{3}
Use the distributive property to multiply -\sqrt{6} by 3\sqrt{2}+2\sqrt{3}.
-3\sqrt{6}\sqrt{2}+2\left(-1\right)\sqrt{6}\sqrt{3}
Multiply 3 and -1 to get -3.
-3\sqrt{2}\sqrt{3}\sqrt{2}+2\left(-1\right)\sqrt{6}\sqrt{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-3\times 2\sqrt{3}+2\left(-1\right)\sqrt{6}\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-3\times 2\sqrt{3}+2\left(-1\right)\sqrt{3}\sqrt{2}\sqrt{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-3\times 2\sqrt{3}+2\left(-1\right)\times 3\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-3\times 2\sqrt{3}-2\times 3\sqrt{2}
Multiply 2 and -1 to get -2.
-3\times 2\sqrt{3}-6\sqrt{2}
Multiply -2 and 3 to get -6.
-6\sqrt{3}-6\sqrt{2}
Multiply -3 and 2 to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}