Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\sqrt{5-2x}\right)^{2}=\left(\sqrt{2x-5}\right)^{2}
Square both sides of the equation.
\left(\sqrt{5-2x}\right)^{2}=\left(\sqrt{2x-5}\right)^{2}
Calculate -\sqrt{5-2x} to the power of 2 and get \left(\sqrt{5-2x}\right)^{2}.
\left(\sqrt{5-2x}\right)^{2}=2x-5
Calculate \sqrt{2x-5} to the power of 2 and get 2x-5.
5-2x=2x-5
Calculate \sqrt{5-2x} to the power of 2 and get 5-2x.
5-2x-2x=-5
Subtract 2x from both sides.
5-4x=-5
Combine -2x and -2x to get -4x.
-4x=-5-5
Subtract 5 from both sides.
-4x=-10
Subtract 5 from -5 to get -10.
x=\frac{-10}{-4}
Divide both sides by -4.
x=\frac{5}{2}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out -2.
-\sqrt{5-2\times \frac{5}{2}}=\sqrt{2\times \frac{5}{2}-5}
Substitute \frac{5}{2} for x in the equation -\sqrt{5-2x}=\sqrt{2x-5}.
0=0
Simplify. The value x=\frac{5}{2} satisfies the equation.
x=\frac{5}{2}
Equation -\sqrt{5-2x}=\sqrt{2x-5} has a unique solution.