Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
\left(-\sqrt{5-2x}\right)^{2}=\left(\sqrt{2x-5}\right)^{2}
Square both sides of the equation.
\left(\sqrt{5-2x}\right)^{2}=\left(\sqrt{2x-5}\right)^{2}
Calculate -\sqrt{5-2x} to the power of 2 and get \left(\sqrt{5-2x}\right)^{2}.
\left(\sqrt{5-2x}\right)^{2}=2x-5
Calculate \sqrt{2x-5} to the power of 2 and get 2x-5.
5-2x=2x-5
Calculate \sqrt{5-2x} to the power of 2 and get 5-2x.
5-2x-2x=-5
Subtract 2x from both sides.
5-4x=-5
Combine -2x and -2x to get -4x.
-4x=-5-5
Subtract 5 from both sides.
-4x=-10
Subtract 5 from -5 to get -10.
x=\frac{-10}{-4}
Divide both sides by -4.
x=\frac{5}{2}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out -2.
-\sqrt{5-2\times \frac{5}{2}}=\sqrt{2\times \frac{5}{2}-5}
Substitute \frac{5}{2} for x in the equation -\sqrt{5-2x}=\sqrt{2x-5}.
0=0
Simplify. The value x=\frac{5}{2} satisfies the equation.
x=\frac{5}{2}
Equation -\sqrt{5-2x}=\sqrt{2x-5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}