Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-\sqrt{\frac{20+1}{5}}}{\sqrt{\frac{7}{10}}}
Multiply 4 and 5 to get 20.
\frac{-\sqrt{\frac{21}{5}}}{\sqrt{\frac{7}{10}}}
Add 20 and 1 to get 21.
\frac{-\frac{\sqrt{21}}{\sqrt{5}}}{\sqrt{\frac{7}{10}}}
Rewrite the square root of the division \sqrt{\frac{21}{5}} as the division of square roots \frac{\sqrt{21}}{\sqrt{5}}.
\frac{-\frac{\sqrt{21}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{7}{10}}}
Rationalize the denominator of \frac{\sqrt{21}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{-\frac{\sqrt{21}\sqrt{5}}{5}}{\sqrt{\frac{7}{10}}}
The square of \sqrt{5} is 5.
\frac{-\frac{\sqrt{105}}{5}}{\sqrt{\frac{7}{10}}}
To multiply \sqrt{21} and \sqrt{5}, multiply the numbers under the square root.
\frac{-\frac{\sqrt{105}}{5}}{\frac{\sqrt{7}}{\sqrt{10}}}
Rewrite the square root of the division \sqrt{\frac{7}{10}} as the division of square roots \frac{\sqrt{7}}{\sqrt{10}}.
\frac{-\frac{\sqrt{105}}{5}}{\frac{\sqrt{7}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{-\frac{\sqrt{105}}{5}}{\frac{\sqrt{7}\sqrt{10}}{10}}
The square of \sqrt{10} is 10.
\frac{-\frac{\sqrt{105}}{5}}{\frac{\sqrt{70}}{10}}
To multiply \sqrt{7} and \sqrt{10}, multiply the numbers under the square root.
\frac{\left(-\frac{\sqrt{105}}{5}\right)\times 10}{\sqrt{70}}
Divide -\frac{\sqrt{105}}{5} by \frac{\sqrt{70}}{10} by multiplying -\frac{\sqrt{105}}{5} by the reciprocal of \frac{\sqrt{70}}{10}.
\frac{-2\sqrt{105}}{\sqrt{70}}
Cancel out 5, the greatest common factor in 10 and 5.
\frac{-2\sqrt{105}\sqrt{70}}{\left(\sqrt{70}\right)^{2}}
Rationalize the denominator of \frac{-2\sqrt{105}}{\sqrt{70}} by multiplying numerator and denominator by \sqrt{70}.
\frac{-2\sqrt{105}\sqrt{70}}{70}
The square of \sqrt{70} is 70.
\frac{-2\sqrt{7350}}{70}
To multiply \sqrt{105} and \sqrt{70}, multiply the numbers under the square root.
\frac{-2\times 35\sqrt{6}}{70}
Factor 7350=35^{2}\times 6. Rewrite the square root of the product \sqrt{35^{2}\times 6} as the product of square roots \sqrt{35^{2}}\sqrt{6}. Take the square root of 35^{2}.
\frac{-70\sqrt{6}}{70}
Multiply -2 and 35 to get -70.
-\sqrt{6}
Cancel out 70 and 70.