Evaluate
-\frac{7\sqrt{6}}{10}\approx -1.71464282
Share
Copied to clipboard
\frac{-\sqrt{\frac{4\times 5+1}{5}}}{1}\sqrt{\frac{7}{10}}
Divide 1 by 1 to get 1.
\frac{-\sqrt{\frac{20+1}{5}}}{1}\sqrt{\frac{7}{10}}
Multiply 4 and 5 to get 20.
\frac{-\sqrt{\frac{21}{5}}}{1}\sqrt{\frac{7}{10}}
Add 20 and 1 to get 21.
\frac{-\frac{\sqrt{21}}{\sqrt{5}}}{1}\sqrt{\frac{7}{10}}
Rewrite the square root of the division \sqrt{\frac{21}{5}} as the division of square roots \frac{\sqrt{21}}{\sqrt{5}}.
\frac{-\frac{\sqrt{21}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{1}\sqrt{\frac{7}{10}}
Rationalize the denominator of \frac{\sqrt{21}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{-\frac{\sqrt{21}\sqrt{5}}{5}}{1}\sqrt{\frac{7}{10}}
The square of \sqrt{5} is 5.
\frac{-\frac{\sqrt{105}}{5}}{1}\sqrt{\frac{7}{10}}
To multiply \sqrt{21} and \sqrt{5}, multiply the numbers under the square root.
\left(-\frac{\sqrt{105}}{5}\right)\sqrt{\frac{7}{10}}
Anything divided by one gives itself.
\left(-\frac{\sqrt{105}}{5}\right)\times \frac{\sqrt{7}}{\sqrt{10}}
Rewrite the square root of the division \sqrt{\frac{7}{10}} as the division of square roots \frac{\sqrt{7}}{\sqrt{10}}.
\left(-\frac{\sqrt{105}}{5}\right)\times \frac{\sqrt{7}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\left(-\frac{\sqrt{105}}{5}\right)\times \frac{\sqrt{7}\sqrt{10}}{10}
The square of \sqrt{10} is 10.
\left(-\frac{\sqrt{105}}{5}\right)\times \frac{\sqrt{70}}{10}
To multiply \sqrt{7} and \sqrt{10}, multiply the numbers under the square root.
\frac{-\sqrt{105}\sqrt{70}}{5\times 10}
Multiply -\frac{\sqrt{105}}{5} times \frac{\sqrt{70}}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{-\sqrt{7350}}{5\times 10}
To multiply \sqrt{105} and \sqrt{70}, multiply the numbers under the square root.
\frac{-\sqrt{7350}}{50}
Multiply 5 and 10 to get 50.
\frac{-35\sqrt{6}}{50}
Factor 7350=35^{2}\times 6. Rewrite the square root of the product \sqrt{35^{2}\times 6} as the product of square roots \sqrt{35^{2}}\sqrt{6}. Take the square root of 35^{2}.
-\frac{7}{10}\sqrt{6}
Divide -35\sqrt{6} by 50 to get -\frac{7}{10}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}