Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-\sqrt{3}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{2}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
-\sqrt{3}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\sqrt{3}-\frac{2\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
-\sqrt{3}-\frac{2\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
-\sqrt{3}-\left(\sqrt{3}-1\right)
Cancel out 2 and 2.
-\sqrt{3}-\sqrt{3}-\left(-1\right)
To find the opposite of \sqrt{3}-1, find the opposite of each term.
-\sqrt{3}-\sqrt{3}+1
The opposite of -1 is 1.
-2\sqrt{3}+1
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.