Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{-\sqrt{3}}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{\left(-\sqrt{3}\right)\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-\sqrt{3}\right)\left(3-\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{\left(-\sqrt{3}\right)\left(3-\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{3\left(-\sqrt{3}\right)-\left(-\sqrt{3}\right)\sqrt{3}}{6}
Use the distributive property to multiply -\sqrt{3} by 3-\sqrt{3}.
\frac{3\left(-\sqrt{3}\right)+\sqrt{3}\sqrt{3}}{6}
Multiply -1 and -1 to get 1.
\frac{3\left(-\sqrt{3}\right)+3}{6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-3\sqrt{3}+3}{6}
Multiply 3 and -1 to get -3.