Solve for x
x=\frac{\sqrt{2}\left(2y+13\right)}{2}
Solve for y
y=\frac{\sqrt{2}x-13}{2}
Graph
Share
Copied to clipboard
\left(-\sqrt{2}\right)x+2y=-13
Subtract 5 from -8 to get -13.
\left(-\sqrt{2}\right)x=-13-2y
Subtract 2y from both sides.
-\sqrt{2}x=-2y-13
Reorder the terms.
\left(-\sqrt{2}\right)x=-2y-13
The equation is in standard form.
\frac{\left(-\sqrt{2}\right)x}{-\sqrt{2}}=\frac{-2y-13}{-\sqrt{2}}
Divide both sides by -\sqrt{2}.
x=\frac{-2y-13}{-\sqrt{2}}
Dividing by -\sqrt{2} undoes the multiplication by -\sqrt{2}.
x=\frac{\sqrt{2}\left(2y+13\right)}{2}
Divide -2y-13 by -\sqrt{2}.
\left(-\sqrt{2}\right)x+2y=-13
Subtract 5 from -8 to get -13.
2y=-13-\left(-\sqrt{2}\right)x
Subtract \left(-\sqrt{2}\right)x from both sides.
2y=-13+\sqrt{2}x
Multiply -1 and -1 to get 1.
2y=\sqrt{2}x-13
The equation is in standard form.
\frac{2y}{2}=\frac{\sqrt{2}x-13}{2}
Divide both sides by 2.
y=\frac{\sqrt{2}x-13}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}