Evaluate
2\sqrt{2}\approx 2.828427125
Share
Copied to clipboard
\frac{-\sqrt{\frac{6+2}{3}}}{-\frac{2}{3}\sqrt{\frac{3}{4}}}
Multiply 2 and 3 to get 6.
\frac{-\sqrt{\frac{8}{3}}}{-\frac{2}{3}\sqrt{\frac{3}{4}}}
Add 6 and 2 to get 8.
\frac{-\frac{\sqrt{8}}{\sqrt{3}}}{-\frac{2}{3}\sqrt{\frac{3}{4}}}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{-\frac{2\sqrt{2}}{\sqrt{3}}}{-\frac{2}{3}\sqrt{\frac{3}{4}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{-\frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{-\frac{2}{3}\sqrt{\frac{3}{4}}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-\frac{2\sqrt{2}\sqrt{3}}{3}}{-\frac{2}{3}\sqrt{\frac{3}{4}}}
The square of \sqrt{3} is 3.
\frac{-\frac{2\sqrt{6}}{3}}{-\frac{2}{3}\sqrt{\frac{3}{4}}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{-\frac{2\sqrt{6}}{3}}{-\frac{2}{3}\times \frac{\sqrt{3}}{\sqrt{4}}}
Rewrite the square root of the division \sqrt{\frac{3}{4}} as the division of square roots \frac{\sqrt{3}}{\sqrt{4}}.
\frac{-\frac{2\sqrt{6}}{3}}{-\frac{2}{3}\times \frac{\sqrt{3}}{2}}
Calculate the square root of 4 and get 2.
\frac{-\frac{2\sqrt{6}}{3}}{\frac{-2\sqrt{3}}{3\times 2}}
Multiply -\frac{2}{3} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{2\sqrt{6}}{3}}{\frac{-\sqrt{3}}{3}}
Cancel out 2 in both numerator and denominator.
\frac{\left(-\frac{2\sqrt{6}}{3}\right)\times 3}{-\sqrt{3}}
Divide -\frac{2\sqrt{6}}{3} by \frac{-\sqrt{3}}{3} by multiplying -\frac{2\sqrt{6}}{3} by the reciprocal of \frac{-\sqrt{3}}{3}.
\frac{-2\sqrt{6}}{-\sqrt{3}}
Cancel out 3 and 3.
\frac{2\sqrt{6}}{\sqrt{3}}
Cancel out -1 in both numerator and denominator.
\frac{2\sqrt{6}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{6}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}\sqrt{2}\sqrt{3}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{2\times 3\sqrt{2}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{2}
Cancel out 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}