Evaluate
-\frac{7\sqrt{2}}{26}\approx -0.380749805
Share
Copied to clipboard
-\sqrt{1-\frac{\left(17\sqrt{2}\right)^{2}}{26^{2}}}
To raise \frac{17\sqrt{2}}{26} to a power, raise both numerator and denominator to the power and then divide.
-\sqrt{1-\frac{17^{2}\left(\sqrt{2}\right)^{2}}{26^{2}}}
Expand \left(17\sqrt{2}\right)^{2}.
-\sqrt{1-\frac{289\left(\sqrt{2}\right)^{2}}{26^{2}}}
Calculate 17 to the power of 2 and get 289.
-\sqrt{1-\frac{289\times 2}{26^{2}}}
The square of \sqrt{2} is 2.
-\sqrt{1-\frac{578}{26^{2}}}
Multiply 289 and 2 to get 578.
-\sqrt{1-\frac{578}{676}}
Calculate 26 to the power of 2 and get 676.
-\sqrt{1-\frac{289}{338}}
Reduce the fraction \frac{578}{676} to lowest terms by extracting and canceling out 2.
-\sqrt{\frac{49}{338}}
Subtract \frac{289}{338} from 1 to get \frac{49}{338}.
-\frac{\sqrt{49}}{\sqrt{338}}
Rewrite the square root of the division \sqrt{\frac{49}{338}} as the division of square roots \frac{\sqrt{49}}{\sqrt{338}}.
-\frac{7}{\sqrt{338}}
Calculate the square root of 49 and get 7.
-\frac{7}{13\sqrt{2}}
Factor 338=13^{2}\times 2. Rewrite the square root of the product \sqrt{13^{2}\times 2} as the product of square roots \sqrt{13^{2}}\sqrt{2}. Take the square root of 13^{2}.
-\frac{7\sqrt{2}}{13\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{7}{13\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
-\frac{7\sqrt{2}}{13\times 2}
The square of \sqrt{2} is 2.
-\frac{7\sqrt{2}}{26}
Multiply 13 and 2 to get 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}