Evaluate (complex solution)
-8+3\sqrt{5}i\approx -8+6.708203932i
Real Part (complex solution)
-8
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
-1+\sqrt{-80}-\sqrt{49}-\sqrt{-5}
Calculate the square root of 1 and get 1.
-1+4i\sqrt{5}-\sqrt{49}-\sqrt{-5}
Factor -80=\left(4i\right)^{2}\times 5. Rewrite the square root of the product \sqrt{\left(4i\right)^{2}\times 5} as the product of square roots \sqrt{\left(4i\right)^{2}}\sqrt{5}. Take the square root of \left(4i\right)^{2}.
-1+4i\sqrt{5}-7-\sqrt{-5}
Calculate the square root of 49 and get 7.
-8+4i\sqrt{5}-\sqrt{-5}
Subtract 7 from -1 to get -8.
-8+4i\sqrt{5}-\sqrt{5}i
Factor -5=5\left(-1\right). Rewrite the square root of the product \sqrt{5\left(-1\right)} as the product of square roots \sqrt{5}\sqrt{-1}. By definition, the square root of -1 is i.
-8+4i\sqrt{5}-i\sqrt{5}
Multiply -1 and i to get -i.
-8+3i\sqrt{5}
Combine 4i\sqrt{5} and -i\sqrt{5} to get 3i\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}