Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-\lambda \right)\left(191\left(-\lambda \right)-\left(-\lambda \right)\lambda -3\gamma \times 2^{2}\right)
Use the distributive property to multiply -\lambda by 191-\lambda .
\left(-\lambda \right)\left(191\left(-\lambda \right)+\lambda \lambda -3\gamma \times 2^{2}\right)
Multiply -1 and -1 to get 1.
\left(-\lambda \right)\left(191\left(-\lambda \right)+\lambda ^{2}-3\gamma \times 2^{2}\right)
Multiply \lambda and \lambda to get \lambda ^{2}.
\left(-\lambda \right)\left(191\left(-\lambda \right)+\lambda ^{2}-3\gamma \times 4\right)
Calculate 2 to the power of 2 and get 4.
\left(-\lambda \right)\left(191\left(-\lambda \right)+\lambda ^{2}-12\gamma \right)
Multiply 3 and 4 to get 12.
191\left(-\lambda \right)^{2}+\left(-\lambda \right)\lambda ^{2}-12\left(-\lambda \right)\gamma
Use the distributive property to multiply -\lambda by 191\left(-\lambda \right)+\lambda ^{2}-12\gamma .
191\lambda ^{2}+\left(-\lambda \right)\lambda ^{2}-12\left(-\lambda \right)\gamma
Calculate -\lambda to the power of 2 and get \lambda ^{2}.
191\lambda ^{2}+\left(-\lambda \right)\lambda ^{2}+12\lambda \gamma
Multiply -12 and -1 to get 12.
191\lambda ^{2}-\lambda ^{3}+12\lambda \gamma
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(-\lambda \right)\left(191\left(-\lambda \right)-\left(-\lambda \right)\lambda -3\gamma \times 2^{2}\right)
Use the distributive property to multiply -\lambda by 191-\lambda .
\left(-\lambda \right)\left(191\left(-\lambda \right)+\lambda \lambda -3\gamma \times 2^{2}\right)
Multiply -1 and -1 to get 1.
\left(-\lambda \right)\left(191\left(-\lambda \right)+\lambda ^{2}-3\gamma \times 2^{2}\right)
Multiply \lambda and \lambda to get \lambda ^{2}.
\left(-\lambda \right)\left(191\left(-\lambda \right)+\lambda ^{2}-3\gamma \times 4\right)
Calculate 2 to the power of 2 and get 4.
\left(-\lambda \right)\left(191\left(-\lambda \right)+\lambda ^{2}-12\gamma \right)
Multiply 3 and 4 to get 12.
191\left(-\lambda \right)^{2}+\left(-\lambda \right)\lambda ^{2}-12\left(-\lambda \right)\gamma
Use the distributive property to multiply -\lambda by 191\left(-\lambda \right)+\lambda ^{2}-12\gamma .
191\lambda ^{2}+\left(-\lambda \right)\lambda ^{2}-12\left(-\lambda \right)\gamma
Calculate -\lambda to the power of 2 and get \lambda ^{2}.
191\lambda ^{2}+\left(-\lambda \right)\lambda ^{2}+12\lambda \gamma
Multiply -12 and -1 to get 12.
191\lambda ^{2}-\lambda ^{3}+12\lambda \gamma
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.