Solve for x
x\in \left(-1,\frac{3}{2}\right)
Graph
Share
Copied to clipboard
-\frac{x}{x+1}>3-\frac{9}{x+1}
Anything divided by one gives itself.
-\frac{x}{x+1}>\frac{3\left(x+1\right)}{x+1}-\frac{9}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x+1}{x+1}.
-\frac{x}{x+1}>\frac{3\left(x+1\right)-9}{x+1}
Since \frac{3\left(x+1\right)}{x+1} and \frac{9}{x+1} have the same denominator, subtract them by subtracting their numerators.
-\frac{x}{x+1}>\frac{3x+3-9}{x+1}
Do the multiplications in 3\left(x+1\right)-9.
-\frac{x}{x+1}>\frac{3x-6}{x+1}
Combine like terms in 3x+3-9.
-\frac{x}{x+1}-\frac{3x-6}{x+1}>0
Subtract \frac{3x-6}{x+1} from both sides.
\frac{-x-\left(3x-6\right)}{x+1}>0
Since -\frac{x}{x+1} and \frac{3x-6}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{-x-3x+6}{x+1}>0
Do the multiplications in -x-\left(3x-6\right).
\frac{-4x+6}{x+1}>0
Combine like terms in -x-3x+6.
6-4x<0 x+1<0
For the quotient to be positive, 6-4x and x+1 have to be both negative or both positive. Consider the case when 6-4x and x+1 are both negative.
x\in \emptyset
This is false for any x.
x+1>0 6-4x>0
Consider the case when 6-4x and x+1 are both positive.
x\in \left(-1,\frac{3}{2}\right)
The solution satisfying both inequalities is x\in \left(-1,\frac{3}{2}\right).
x\in \left(-1,\frac{3}{2}\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}