Solve for a
a=\frac{x^{2}}{x+1}
x\neq -1\text{ and }x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{a\left(a+4\right)}+a}{2}
x=\frac{-\sqrt{a\left(a+4\right)}+a}{2}\text{, }a\neq 0
Solve for x
x=\frac{\sqrt{a\left(a+4\right)}+a}{2}
x=\frac{-\sqrt{a\left(a+4\right)}+a}{2}\text{, }a\leq -4\text{ or }a>0
Graph
Share
Copied to clipboard
-a-xa+x^{2}=0
Multiply both sides of the equation by x^{2}, the least common multiple of x^{2},x.
-a-xa=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-ax-a=-x^{2}
Reorder the terms.
\left(-x-1\right)a=-x^{2}
Combine all terms containing a.
\frac{\left(-x-1\right)a}{-x-1}=-\frac{x^{2}}{-x-1}
Divide both sides by -1-x.
a=-\frac{x^{2}}{-x-1}
Dividing by -1-x undoes the multiplication by -1-x.
a=\frac{x^{2}}{x+1}
Divide -x^{2} by -1-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}