Solve for x
x=\frac{9}{10}=0.9
x=-\frac{9}{10}=-0.9
Graph
Share
Copied to clipboard
-\frac{9}{25}\left(-\frac{9}{4}\right)=x^{2}
Multiply both sides by -\frac{9}{4}, the reciprocal of -\frac{4}{9}.
\frac{81}{100}=x^{2}
Multiply -\frac{9}{25} and -\frac{9}{4} to get \frac{81}{100}.
x^{2}=\frac{81}{100}
Swap sides so that all variable terms are on the left hand side.
x^{2}-\frac{81}{100}=0
Subtract \frac{81}{100} from both sides.
100x^{2}-81=0
Multiply both sides by 100.
\left(10x-9\right)\left(10x+9\right)=0
Consider 100x^{2}-81. Rewrite 100x^{2}-81 as \left(10x\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{9}{10} x=-\frac{9}{10}
To find equation solutions, solve 10x-9=0 and 10x+9=0.
-\frac{9}{25}\left(-\frac{9}{4}\right)=x^{2}
Multiply both sides by -\frac{9}{4}, the reciprocal of -\frac{4}{9}.
\frac{81}{100}=x^{2}
Multiply -\frac{9}{25} and -\frac{9}{4} to get \frac{81}{100}.
x^{2}=\frac{81}{100}
Swap sides so that all variable terms are on the left hand side.
x=\frac{9}{10} x=-\frac{9}{10}
Take the square root of both sides of the equation.
-\frac{9}{25}\left(-\frac{9}{4}\right)=x^{2}
Multiply both sides by -\frac{9}{4}, the reciprocal of -\frac{4}{9}.
\frac{81}{100}=x^{2}
Multiply -\frac{9}{25} and -\frac{9}{4} to get \frac{81}{100}.
x^{2}=\frac{81}{100}
Swap sides so that all variable terms are on the left hand side.
x^{2}-\frac{81}{100}=0
Subtract \frac{81}{100} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{81}{100}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{81}{100} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{81}{100}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{81}{25}}}{2}
Multiply -4 times -\frac{81}{100}.
x=\frac{0±\frac{9}{5}}{2}
Take the square root of \frac{81}{25}.
x=\frac{9}{10}
Now solve the equation x=\frac{0±\frac{9}{5}}{2} when ± is plus.
x=-\frac{9}{10}
Now solve the equation x=\frac{0±\frac{9}{5}}{2} when ± is minus.
x=\frac{9}{10} x=-\frac{9}{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}