Evaluate
-\frac{4}{7}\approx -0.571428571
Factor
-\frac{4}{7} = -0.5714285714285714
Share
Copied to clipboard
-\frac{7}{5}+\frac{15}{5}-\frac{30}{21}+\frac{1}{7}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Convert 3 to fraction \frac{15}{5}.
\frac{-7+15}{5}-\frac{30}{21}+\frac{1}{7}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Since -\frac{7}{5} and \frac{15}{5} have the same denominator, add them by adding their numerators.
\frac{8}{5}-\frac{30}{21}+\frac{1}{7}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Add -7 and 15 to get 8.
\frac{8}{5}-\frac{10}{7}+\frac{1}{7}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Reduce the fraction \frac{30}{21} to lowest terms by extracting and canceling out 3.
\frac{56}{35}-\frac{50}{35}+\frac{1}{7}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Least common multiple of 5 and 7 is 35. Convert \frac{8}{5} and \frac{10}{7} to fractions with denominator 35.
\frac{56-50}{35}+\frac{1}{7}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Since \frac{56}{35} and \frac{50}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{6}{35}+\frac{1}{7}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Subtract 50 from 56 to get 6.
\frac{6}{35}+\frac{5}{35}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Least common multiple of 35 and 7 is 35. Convert \frac{6}{35} and \frac{1}{7} to fractions with denominator 35.
\frac{6+5}{35}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Since \frac{6}{35} and \frac{5}{35} have the same denominator, add them by adding their numerators.
\frac{11}{35}-\frac{4}{5}-\frac{2}{7}+\frac{1}{5}
Add 6 and 5 to get 11.
\frac{11}{35}-\frac{28}{35}-\frac{2}{7}+\frac{1}{5}
Least common multiple of 35 and 5 is 35. Convert \frac{11}{35} and \frac{4}{5} to fractions with denominator 35.
\frac{11-28}{35}-\frac{2}{7}+\frac{1}{5}
Since \frac{11}{35} and \frac{28}{35} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{35}-\frac{2}{7}+\frac{1}{5}
Subtract 28 from 11 to get -17.
-\frac{17}{35}-\frac{10}{35}+\frac{1}{5}
Least common multiple of 35 and 7 is 35. Convert -\frac{17}{35} and \frac{2}{7} to fractions with denominator 35.
\frac{-17-10}{35}+\frac{1}{5}
Since -\frac{17}{35} and \frac{10}{35} have the same denominator, subtract them by subtracting their numerators.
-\frac{27}{35}+\frac{1}{5}
Subtract 10 from -17 to get -27.
-\frac{27}{35}+\frac{7}{35}
Least common multiple of 35 and 5 is 35. Convert -\frac{27}{35} and \frac{1}{5} to fractions with denominator 35.
\frac{-27+7}{35}
Since -\frac{27}{35} and \frac{7}{35} have the same denominator, add them by adding their numerators.
\frac{-20}{35}
Add -27 and 7 to get -20.
-\frac{4}{7}
Reduce the fraction \frac{-20}{35} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}