Evaluate
-\frac{131}{120}\approx -1.091666667
Factor
-\frac{131}{120} = -1\frac{11}{120} = -1.0916666666666666
Share
Copied to clipboard
-\frac{21}{120}-\frac{64}{120}-\frac{23}{60}
Least common multiple of 40 and 15 is 120. Convert -\frac{7}{40} and \frac{8}{15} to fractions with denominator 120.
\frac{-21-64}{120}-\frac{23}{60}
Since -\frac{21}{120} and \frac{64}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{-85}{120}-\frac{23}{60}
Subtract 64 from -21 to get -85.
-\frac{17}{24}-\frac{23}{60}
Reduce the fraction \frac{-85}{120} to lowest terms by extracting and canceling out 5.
-\frac{85}{120}-\frac{46}{120}
Least common multiple of 24 and 60 is 120. Convert -\frac{17}{24} and \frac{23}{60} to fractions with denominator 120.
\frac{-85-46}{120}
Since -\frac{85}{120} and \frac{46}{120} have the same denominator, subtract them by subtracting their numerators.
-\frac{131}{120}
Subtract 46 from -85 to get -131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}