Evaluate
-12
Factor
-12
Share
Copied to clipboard
-7\times \frac{3}{2}-3\left(-\frac{9}{2}+5\right)
Cancel out 4 and 4.
\frac{-7\times 3}{2}-3\left(-\frac{9}{2}+5\right)
Express -7\times \frac{3}{2} as a single fraction.
\frac{-21}{2}-3\left(-\frac{9}{2}+5\right)
Multiply -7 and 3 to get -21.
-\frac{21}{2}-3\left(-\frac{9}{2}+5\right)
Fraction \frac{-21}{2} can be rewritten as -\frac{21}{2} by extracting the negative sign.
-\frac{21}{2}-3\left(-\frac{9}{2}+\frac{10}{2}\right)
Convert 5 to fraction \frac{10}{2}.
-\frac{21}{2}-3\times \frac{-9+10}{2}
Since -\frac{9}{2} and \frac{10}{2} have the same denominator, add them by adding their numerators.
-\frac{21}{2}-3\times \frac{1}{2}
Add -9 and 10 to get 1.
-\frac{21}{2}-\frac{3}{2}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{-21-3}{2}
Since -\frac{21}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-24}{2}
Subtract 3 from -21 to get -24.
-12
Divide -24 by 2 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}