Solve for x
x\geq \frac{61}{15}
Graph
Share
Copied to clipboard
-\frac{6}{5}\times 6\geq 5-3x
Multiply both sides by 6. Since 6 is positive, the inequality direction remains the same.
\frac{-6\times 6}{5}\geq 5-3x
Express -\frac{6}{5}\times 6 as a single fraction.
\frac{-36}{5}\geq 5-3x
Multiply -6 and 6 to get -36.
-\frac{36}{5}\geq 5-3x
Fraction \frac{-36}{5} can be rewritten as -\frac{36}{5} by extracting the negative sign.
5-3x\leq -\frac{36}{5}
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-3x\leq -\frac{36}{5}-5
Subtract 5 from both sides.
-3x\leq -\frac{36}{5}-\frac{25}{5}
Convert 5 to fraction \frac{25}{5}.
-3x\leq \frac{-36-25}{5}
Since -\frac{36}{5} and \frac{25}{5} have the same denominator, subtract them by subtracting their numerators.
-3x\leq -\frac{61}{5}
Subtract 25 from -36 to get -61.
x\geq \frac{-\frac{61}{5}}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x\geq \frac{-61}{5\left(-3\right)}
Express \frac{-\frac{61}{5}}{-3} as a single fraction.
x\geq \frac{-61}{-15}
Multiply 5 and -3 to get -15.
x\geq \frac{61}{15}
Fraction \frac{-61}{-15} can be simplified to \frac{61}{15} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}