Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-2x+3=-\frac{5}{2}
Swap sides so that all variable terms are on the left hand side.
-x^{2}-2x+3+\frac{5}{2}=0
Add \frac{5}{2} to both sides.
-x^{2}-2x+\frac{11}{2}=0
Add 3 and \frac{5}{2} to get \frac{11}{2}.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times \frac{11}{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and \frac{11}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times \frac{11}{2}}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times \frac{11}{2}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+22}}{2\left(-1\right)}
Multiply 4 times \frac{11}{2}.
x=\frac{-\left(-2\right)±\sqrt{26}}{2\left(-1\right)}
Add 4 to 22.
x=\frac{2±\sqrt{26}}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±\sqrt{26}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{26}+2}{-2}
Now solve the equation x=\frac{2±\sqrt{26}}{-2} when ± is plus. Add 2 to \sqrt{26}.
x=-\frac{\sqrt{26}}{2}-1
Divide 2+\sqrt{26} by -2.
x=\frac{2-\sqrt{26}}{-2}
Now solve the equation x=\frac{2±\sqrt{26}}{-2} when ± is minus. Subtract \sqrt{26} from 2.
x=\frac{\sqrt{26}}{2}-1
Divide 2-\sqrt{26} by -2.
x=-\frac{\sqrt{26}}{2}-1 x=\frac{\sqrt{26}}{2}-1
The equation is now solved.
-x^{2}-2x+3=-\frac{5}{2}
Swap sides so that all variable terms are on the left hand side.
-x^{2}-2x=-\frac{5}{2}-3
Subtract 3 from both sides.
-x^{2}-2x=-\frac{11}{2}
Subtract 3 from -\frac{5}{2} to get -\frac{11}{2}.
\frac{-x^{2}-2x}{-1}=-\frac{\frac{11}{2}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{\frac{11}{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=-\frac{\frac{11}{2}}{-1}
Divide -2 by -1.
x^{2}+2x=\frac{11}{2}
Divide -\frac{11}{2} by -1.
x^{2}+2x+1^{2}=\frac{11}{2}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{11}{2}+1
Square 1.
x^{2}+2x+1=\frac{13}{2}
Add \frac{11}{2} to 1.
\left(x+1\right)^{2}=\frac{13}{2}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{13}{2}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{26}}{2} x+1=-\frac{\sqrt{26}}{2}
Simplify.
x=\frac{\sqrt{26}}{2}-1 x=-\frac{\sqrt{26}}{2}-1
Subtract 1 from both sides of the equation.