Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-\frac{5}{18}x^{4}\times 3}{2}x
Divide -\frac{5}{18}x^{4} by \frac{2}{3} by multiplying -\frac{5}{18}x^{4} by the reciprocal of \frac{2}{3}.
\frac{-\frac{5}{6}x^{4}}{2}x
Multiply -\frac{5}{18} and 3 to get -\frac{5}{6}.
-\frac{5}{12}x^{4}x
Divide -\frac{5}{6}x^{4} by 2 to get -\frac{5}{12}x^{4}.
-\frac{5}{12}x^{5}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{5}{18}x^{4}\times 3}{2}x)
Divide -\frac{5}{18}x^{4} by \frac{2}{3} by multiplying -\frac{5}{18}x^{4} by the reciprocal of \frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{5}{6}x^{4}}{2}x)
Multiply -\frac{5}{18} and 3 to get -\frac{5}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{5}{12}x^{4}x)
Divide -\frac{5}{6}x^{4} by 2 to get -\frac{5}{12}x^{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{5}{12}x^{5})
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
5\left(-\frac{5}{12}\right)x^{5-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{25}{12}x^{5-1}
Multiply 5 times -\frac{5}{12}.
-\frac{25}{12}x^{4}
Subtract 1 from 5.