Evaluate
-\frac{x-4}{2\left(x-2\right)}
Expand
-\frac{x-4}{2\left(x-2\right)}
Graph
Share
Copied to clipboard
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{9x}{\left(x-4\right)\left(x+4\right)}-\frac{x+4}{x\left(x-4\right)}}
Factor x^{2}-16. Factor x^{2}-4x.
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{9xx}{x\left(x-4\right)\left(x+4\right)}-\frac{\left(x+4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x\left(x-4\right) is x\left(x-4\right)\left(x+4\right). Multiply \frac{9x}{\left(x-4\right)\left(x+4\right)} times \frac{x}{x}. Multiply \frac{x+4}{x\left(x-4\right)} times \frac{x+4}{x+4}.
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{9xx-\left(x+4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}}
Since \frac{9xx}{x\left(x-4\right)\left(x+4\right)} and \frac{\left(x+4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{9x^{2}-x^{2}-4x-4x-16}{x\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 9xx-\left(x+4\right)\left(x+4\right).
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{8x^{2}-8x-16}{x\left(x-4\right)\left(x+4\right)}}
Combine like terms in 9x^{2}-x^{2}-4x-4x-16.
\frac{\left(-\frac{4\left(x+1\right)}{x^{2}+4x}\right)x\left(x-4\right)\left(x+4\right)}{8x^{2}-8x-16}
Divide -\frac{4\left(x+1\right)}{x^{2}+4x} by \frac{8x^{2}-8x-16}{x\left(x-4\right)\left(x+4\right)} by multiplying -\frac{4\left(x+1\right)}{x^{2}+4x} by the reciprocal of \frac{8x^{2}-8x-16}{x\left(x-4\right)\left(x+4\right)}.
\frac{\frac{-4\left(x+1\right)x}{x^{2}+4x}\left(x-4\right)\left(x+4\right)}{8x^{2}-8x-16}
Express \left(-\frac{4\left(x+1\right)}{x^{2}+4x}\right)x as a single fraction.
\frac{\frac{-4\left(x+1\right)x\left(x-4\right)}{x^{2}+4x}\left(x+4\right)}{8x^{2}-8x-16}
Express \frac{-4\left(x+1\right)x}{x^{2}+4x}\left(x-4\right) as a single fraction.
\frac{\frac{-4\left(x+1\right)x\left(x-4\right)\left(x+4\right)}{x^{2}+4x}}{8x^{2}-8x-16}
Express \frac{-4\left(x+1\right)x\left(x-4\right)}{x^{2}+4x}\left(x+4\right) as a single fraction.
\frac{-4\left(x+1\right)x\left(x-4\right)\left(x+4\right)}{\left(x^{2}+4x\right)\left(8x^{2}-8x-16\right)}
Express \frac{\frac{-4\left(x+1\right)x\left(x-4\right)\left(x+4\right)}{x^{2}+4x}}{8x^{2}-8x-16} as a single fraction.
\frac{-4x\left(x-4\right)\left(x+1\right)\left(x+4\right)}{8x\left(x-2\right)\left(x+1\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-4\right)}{2\left(x-2\right)}
Cancel out 4x\left(x+1\right)\left(x+4\right) in both numerator and denominator.
\frac{-x+4}{2x-4}
Expand the expression.
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{9x}{\left(x-4\right)\left(x+4\right)}-\frac{x+4}{x\left(x-4\right)}}
Factor x^{2}-16. Factor x^{2}-4x.
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{9xx}{x\left(x-4\right)\left(x+4\right)}-\frac{\left(x+4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x\left(x-4\right) is x\left(x-4\right)\left(x+4\right). Multiply \frac{9x}{\left(x-4\right)\left(x+4\right)} times \frac{x}{x}. Multiply \frac{x+4}{x\left(x-4\right)} times \frac{x+4}{x+4}.
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{9xx-\left(x+4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}}
Since \frac{9xx}{x\left(x-4\right)\left(x+4\right)} and \frac{\left(x+4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{9x^{2}-x^{2}-4x-4x-16}{x\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 9xx-\left(x+4\right)\left(x+4\right).
\frac{-\frac{4\left(x+1\right)}{x^{2}+4x}}{\frac{8x^{2}-8x-16}{x\left(x-4\right)\left(x+4\right)}}
Combine like terms in 9x^{2}-x^{2}-4x-4x-16.
\frac{\left(-\frac{4\left(x+1\right)}{x^{2}+4x}\right)x\left(x-4\right)\left(x+4\right)}{8x^{2}-8x-16}
Divide -\frac{4\left(x+1\right)}{x^{2}+4x} by \frac{8x^{2}-8x-16}{x\left(x-4\right)\left(x+4\right)} by multiplying -\frac{4\left(x+1\right)}{x^{2}+4x} by the reciprocal of \frac{8x^{2}-8x-16}{x\left(x-4\right)\left(x+4\right)}.
\frac{\frac{-4\left(x+1\right)x}{x^{2}+4x}\left(x-4\right)\left(x+4\right)}{8x^{2}-8x-16}
Express \left(-\frac{4\left(x+1\right)}{x^{2}+4x}\right)x as a single fraction.
\frac{\frac{-4\left(x+1\right)x\left(x-4\right)}{x^{2}+4x}\left(x+4\right)}{8x^{2}-8x-16}
Express \frac{-4\left(x+1\right)x}{x^{2}+4x}\left(x-4\right) as a single fraction.
\frac{\frac{-4\left(x+1\right)x\left(x-4\right)\left(x+4\right)}{x^{2}+4x}}{8x^{2}-8x-16}
Express \frac{-4\left(x+1\right)x\left(x-4\right)}{x^{2}+4x}\left(x+4\right) as a single fraction.
\frac{-4\left(x+1\right)x\left(x-4\right)\left(x+4\right)}{\left(x^{2}+4x\right)\left(8x^{2}-8x-16\right)}
Express \frac{\frac{-4\left(x+1\right)x\left(x-4\right)\left(x+4\right)}{x^{2}+4x}}{8x^{2}-8x-16} as a single fraction.
\frac{-4x\left(x-4\right)\left(x+1\right)\left(x+4\right)}{8x\left(x-2\right)\left(x+1\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-4\right)}{2\left(x-2\right)}
Cancel out 4x\left(x+1\right)\left(x+4\right) in both numerator and denominator.
\frac{-x+4}{2x-4}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}