Solve for x
x\leq \frac{15}{2}
Graph
Share
Copied to clipboard
-\frac{4}{5}x+2+\frac{6}{5}x\leq 5
Add \frac{6}{5}x to both sides.
\frac{2}{5}x+2\leq 5
Combine -\frac{4}{5}x and \frac{6}{5}x to get \frac{2}{5}x.
\frac{2}{5}x\leq 5-2
Subtract 2 from both sides.
\frac{2}{5}x\leq 3
Subtract 2 from 5 to get 3.
x\leq 3\times \frac{5}{2}
Multiply both sides by \frac{5}{2}, the reciprocal of \frac{2}{5}. Since \frac{2}{5} is positive, the inequality direction remains the same.
x\leq \frac{3\times 5}{2}
Express 3\times \frac{5}{2} as a single fraction.
x\leq \frac{15}{2}
Multiply 3 and 5 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}