Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Subtract \frac{1}{2}x^{2} from both sides.
x\left(-\frac{4}{3}-\frac{1}{2}x\right)=0
Factor out x.
x=0 x=-\frac{8}{3}
To find equation solutions, solve x=0 and -\frac{4}{3}-\frac{x}{2}=0.
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Subtract \frac{1}{2}x^{2} from both sides.
-\frac{1}{2}x^{2}-\frac{4}{3}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, -\frac{4}{3} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{4}{3}}{2\left(-\frac{1}{2}\right)}
Take the square root of \left(-\frac{4}{3}\right)^{2}.
x=\frac{\frac{4}{3}±\frac{4}{3}}{2\left(-\frac{1}{2}\right)}
The opposite of -\frac{4}{3} is \frac{4}{3}.
x=\frac{\frac{4}{3}±\frac{4}{3}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\frac{8}{3}}{-1}
Now solve the equation x=\frac{\frac{4}{3}±\frac{4}{3}}{-1} when ± is plus. Add \frac{4}{3} to \frac{4}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{8}{3}
Divide \frac{8}{3} by -1.
x=\frac{0}{-1}
Now solve the equation x=\frac{\frac{4}{3}±\frac{4}{3}}{-1} when ± is minus. Subtract \frac{4}{3} from \frac{4}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -1.
x=-\frac{8}{3} x=0
The equation is now solved.
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Subtract \frac{1}{2}x^{2} from both sides.
-\frac{1}{2}x^{2}-\frac{4}{3}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}-\frac{4}{3}x}{-\frac{1}{2}}=\frac{0}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\left(-\frac{\frac{4}{3}}{-\frac{1}{2}}\right)x=\frac{0}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}+\frac{8}{3}x=\frac{0}{-\frac{1}{2}}
Divide -\frac{4}{3} by -\frac{1}{2} by multiplying -\frac{4}{3} by the reciprocal of -\frac{1}{2}.
x^{2}+\frac{8}{3}x=0
Divide 0 by -\frac{1}{2} by multiplying 0 by the reciprocal of -\frac{1}{2}.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{4}{3}\right)^{2}=\frac{16}{9}
Factor x^{2}+\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x+\frac{4}{3}=\frac{4}{3} x+\frac{4}{3}=-\frac{4}{3}
Simplify.
x=0 x=-\frac{8}{3}
Subtract \frac{4}{3} from both sides of the equation.