Evaluate
-8\sqrt{6}\approx -19.595917942
Share
Copied to clipboard
\frac{-\frac{4}{3}\times 3\sqrt{2}}{2}\sqrt{8}\times \frac{1}{3}\sqrt{54}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{-4\sqrt{2}}{2}\sqrt{8}\times \frac{1}{3}\sqrt{54}
Cancel out 3 and 3.
-2\sqrt{2}\sqrt{8}\times \frac{1}{3}\sqrt{54}
Divide -4\sqrt{2} by 2 to get -2\sqrt{2}.
-2\sqrt{2}\times 2\sqrt{2}\times \frac{1}{3}\sqrt{54}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-4\sqrt{2}\sqrt{2}\times \frac{1}{3}\sqrt{54}
Multiply -2 and 2 to get -4.
-4\times 2\times \frac{1}{3}\sqrt{54}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-4}{3}\times 2\sqrt{54}
Multiply -4 and \frac{1}{3} to get \frac{-4}{3}.
-\frac{4}{3}\times 2\sqrt{54}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{4}{3}\times 2\times 3\sqrt{6}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
-4\times 2\sqrt{6}
Cancel out 3 and 3.
-8\sqrt{6}
Multiply -4 and 2 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}