Evaluate
-\frac{3}{2}=-1.5
Factor
-\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
-\frac{3}{8}\sqrt{10}\times 2\sqrt{\frac{2}{5}}
Divide -\frac{3}{8}\sqrt{10} by \frac{1}{2} by multiplying -\frac{3}{8}\sqrt{10} by the reciprocal of \frac{1}{2}.
\frac{-3\times 2}{8}\sqrt{10}\sqrt{\frac{2}{5}}
Express -\frac{3}{8}\times 2 as a single fraction.
\frac{-6}{8}\sqrt{10}\sqrt{\frac{2}{5}}
Multiply -3 and 2 to get -6.
-\frac{3}{4}\sqrt{10}\sqrt{\frac{2}{5}}
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
-\frac{3}{4}\sqrt{10}\times \frac{\sqrt{2}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
-\frac{3}{4}\sqrt{10}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
-\frac{3}{4}\sqrt{10}\times \frac{\sqrt{2}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
-\frac{3}{4}\sqrt{10}\times \frac{\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{-3\sqrt{10}}{4\times 5}\sqrt{10}
Multiply -\frac{3}{4} times \frac{\sqrt{10}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-3\sqrt{10}}{20}\sqrt{10}
Multiply 4 and 5 to get 20.
\frac{-3\sqrt{10}\sqrt{10}}{20}
Express \frac{-3\sqrt{10}}{20}\sqrt{10} as a single fraction.
\frac{-3\times 10}{20}
Multiply \sqrt{10} and \sqrt{10} to get 10.
\frac{-30}{20}
Multiply -3 and 10 to get -30.
-\frac{3}{2}
Reduce the fraction \frac{-30}{20} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}