Solve for x
x=3\sqrt{5}+10\approx 16.708203932
x=10-3\sqrt{5}\approx 3.291796068
Graph
Quiz
Quadratic Equation
5 problems similar to:
- \frac{ 3 }{ 50 } { x }^{ 2 } + \frac{ 6 }{ 5 } x-3.3 = 0
Share
Copied to clipboard
-\frac{3}{50}x^{2}+\frac{6}{5}x-3.3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{6}{5}±\sqrt{\left(\frac{6}{5}\right)^{2}-4\left(-\frac{3}{50}\right)\left(-3.3\right)}}{2\left(-\frac{3}{50}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{50} for a, \frac{6}{5} for b, and -3.3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{6}{5}±\sqrt{\frac{36}{25}-4\left(-\frac{3}{50}\right)\left(-3.3\right)}}{2\left(-\frac{3}{50}\right)}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{6}{5}±\sqrt{\frac{36}{25}+\frac{6}{25}\left(-3.3\right)}}{2\left(-\frac{3}{50}\right)}
Multiply -4 times -\frac{3}{50}.
x=\frac{-\frac{6}{5}±\sqrt{\frac{36}{25}-\frac{99}{125}}}{2\left(-\frac{3}{50}\right)}
Multiply \frac{6}{25} times -3.3 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{6}{5}±\sqrt{\frac{81}{125}}}{2\left(-\frac{3}{50}\right)}
Add \frac{36}{25} to -\frac{99}{125} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{6}{5}±\frac{9\sqrt{5}}{25}}{2\left(-\frac{3}{50}\right)}
Take the square root of \frac{81}{125}.
x=\frac{-\frac{6}{5}±\frac{9\sqrt{5}}{25}}{-\frac{3}{25}}
Multiply 2 times -\frac{3}{50}.
x=\frac{\frac{9\sqrt{5}}{25}-\frac{6}{5}}{-\frac{3}{25}}
Now solve the equation x=\frac{-\frac{6}{5}±\frac{9\sqrt{5}}{25}}{-\frac{3}{25}} when ± is plus. Add -\frac{6}{5} to \frac{9\sqrt{5}}{25}.
x=10-3\sqrt{5}
Divide -\frac{6}{5}+\frac{9\sqrt{5}}{25} by -\frac{3}{25} by multiplying -\frac{6}{5}+\frac{9\sqrt{5}}{25} by the reciprocal of -\frac{3}{25}.
x=\frac{-\frac{9\sqrt{5}}{25}-\frac{6}{5}}{-\frac{3}{25}}
Now solve the equation x=\frac{-\frac{6}{5}±\frac{9\sqrt{5}}{25}}{-\frac{3}{25}} when ± is minus. Subtract \frac{9\sqrt{5}}{25} from -\frac{6}{5}.
x=3\sqrt{5}+10
Divide -\frac{6}{5}-\frac{9\sqrt{5}}{25} by -\frac{3}{25} by multiplying -\frac{6}{5}-\frac{9\sqrt{5}}{25} by the reciprocal of -\frac{3}{25}.
x=10-3\sqrt{5} x=3\sqrt{5}+10
The equation is now solved.
-\frac{3}{50}x^{2}+\frac{6}{5}x-3.3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{3}{50}x^{2}+\frac{6}{5}x-3.3-\left(-3.3\right)=-\left(-3.3\right)
Add 3.3 to both sides of the equation.
-\frac{3}{50}x^{2}+\frac{6}{5}x=-\left(-3.3\right)
Subtracting -3.3 from itself leaves 0.
-\frac{3}{50}x^{2}+\frac{6}{5}x=3.3
Subtract -3.3 from 0.
\frac{-\frac{3}{50}x^{2}+\frac{6}{5}x}{-\frac{3}{50}}=\frac{3.3}{-\frac{3}{50}}
Divide both sides of the equation by -\frac{3}{50}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{6}{5}}{-\frac{3}{50}}x=\frac{3.3}{-\frac{3}{50}}
Dividing by -\frac{3}{50} undoes the multiplication by -\frac{3}{50}.
x^{2}-20x=\frac{3.3}{-\frac{3}{50}}
Divide \frac{6}{5} by -\frac{3}{50} by multiplying \frac{6}{5} by the reciprocal of -\frac{3}{50}.
x^{2}-20x=-55
Divide 3.3 by -\frac{3}{50} by multiplying 3.3 by the reciprocal of -\frac{3}{50}.
x^{2}-20x+\left(-10\right)^{2}=-55+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-55+100
Square -10.
x^{2}-20x+100=45
Add -55 to 100.
\left(x-10\right)^{2}=45
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{45}
Take the square root of both sides of the equation.
x-10=3\sqrt{5} x-10=-3\sqrt{5}
Simplify.
x=3\sqrt{5}+10 x=10-3\sqrt{5}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}