Solve for p
p = \frac{14}{5} = 2\frac{4}{5} = 2.8
Share
Copied to clipboard
\frac{-3\times 3}{5}+p=1
Express -\frac{3}{5}\times 3 as a single fraction.
\frac{-9}{5}+p=1
Multiply -3 and 3 to get -9.
-\frac{9}{5}+p=1
Fraction \frac{-9}{5} can be rewritten as -\frac{9}{5} by extracting the negative sign.
p=1+\frac{9}{5}
Add \frac{9}{5} to both sides.
p=\frac{5}{5}+\frac{9}{5}
Convert 1 to fraction \frac{5}{5}.
p=\frac{5+9}{5}
Since \frac{5}{5} and \frac{9}{5} have the same denominator, add them by adding their numerators.
p=\frac{14}{5}
Add 5 and 9 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}