Solve for x
x=4
x=10
Graph
Quiz
Quadratic Equation
5 problems similar to:
- \frac{ 3 }{ 4 } x+8=- \frac{ 1 }{ 8 } { x }^{ 2 } +x+3
Share
Copied to clipboard
-\frac{3}{4}x+8+\frac{1}{8}x^{2}=x+3
Add \frac{1}{8}x^{2} to both sides.
-\frac{3}{4}x+8+\frac{1}{8}x^{2}-x=3
Subtract x from both sides.
-\frac{7}{4}x+8+\frac{1}{8}x^{2}=3
Combine -\frac{3}{4}x and -x to get -\frac{7}{4}x.
-\frac{7}{4}x+8+\frac{1}{8}x^{2}-3=0
Subtract 3 from both sides.
-\frac{7}{4}x+5+\frac{1}{8}x^{2}=0
Subtract 3 from 8 to get 5.
\frac{1}{8}x^{2}-\frac{7}{4}x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\left(-\frac{7}{4}\right)^{2}-4\times \frac{1}{8}\times 5}}{2\times \frac{1}{8}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{8} for a, -\frac{7}{4} for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\frac{49}{16}-4\times \frac{1}{8}\times 5}}{2\times \frac{1}{8}}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\frac{49}{16}-\frac{1}{2}\times 5}}{2\times \frac{1}{8}}
Multiply -4 times \frac{1}{8}.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\frac{49}{16}-\frac{5}{2}}}{2\times \frac{1}{8}}
Multiply -\frac{1}{2} times 5.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\frac{9}{16}}}{2\times \frac{1}{8}}
Add \frac{49}{16} to -\frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{7}{4}\right)±\frac{3}{4}}{2\times \frac{1}{8}}
Take the square root of \frac{9}{16}.
x=\frac{\frac{7}{4}±\frac{3}{4}}{2\times \frac{1}{8}}
The opposite of -\frac{7}{4} is \frac{7}{4}.
x=\frac{\frac{7}{4}±\frac{3}{4}}{\frac{1}{4}}
Multiply 2 times \frac{1}{8}.
x=\frac{\frac{5}{2}}{\frac{1}{4}}
Now solve the equation x=\frac{\frac{7}{4}±\frac{3}{4}}{\frac{1}{4}} when ± is plus. Add \frac{7}{4} to \frac{3}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=10
Divide \frac{5}{2} by \frac{1}{4} by multiplying \frac{5}{2} by the reciprocal of \frac{1}{4}.
x=\frac{1}{\frac{1}{4}}
Now solve the equation x=\frac{\frac{7}{4}±\frac{3}{4}}{\frac{1}{4}} when ± is minus. Subtract \frac{3}{4} from \frac{7}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=4
Divide 1 by \frac{1}{4} by multiplying 1 by the reciprocal of \frac{1}{4}.
x=10 x=4
The equation is now solved.
-\frac{3}{4}x+8+\frac{1}{8}x^{2}=x+3
Add \frac{1}{8}x^{2} to both sides.
-\frac{3}{4}x+8+\frac{1}{8}x^{2}-x=3
Subtract x from both sides.
-\frac{7}{4}x+8+\frac{1}{8}x^{2}=3
Combine -\frac{3}{4}x and -x to get -\frac{7}{4}x.
-\frac{7}{4}x+\frac{1}{8}x^{2}=3-8
Subtract 8 from both sides.
-\frac{7}{4}x+\frac{1}{8}x^{2}=-5
Subtract 8 from 3 to get -5.
\frac{1}{8}x^{2}-\frac{7}{4}x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{8}x^{2}-\frac{7}{4}x}{\frac{1}{8}}=-\frac{5}{\frac{1}{8}}
Multiply both sides by 8.
x^{2}+\left(-\frac{\frac{7}{4}}{\frac{1}{8}}\right)x=-\frac{5}{\frac{1}{8}}
Dividing by \frac{1}{8} undoes the multiplication by \frac{1}{8}.
x^{2}-14x=-\frac{5}{\frac{1}{8}}
Divide -\frac{7}{4} by \frac{1}{8} by multiplying -\frac{7}{4} by the reciprocal of \frac{1}{8}.
x^{2}-14x=-40
Divide -5 by \frac{1}{8} by multiplying -5 by the reciprocal of \frac{1}{8}.
x^{2}-14x+\left(-7\right)^{2}=-40+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-40+49
Square -7.
x^{2}-14x+49=9
Add -40 to 49.
\left(x-7\right)^{2}=9
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-7=3 x-7=-3
Simplify.
x=10 x=4
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}