Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{15\left(-3\right)}{4}\sqrt{\frac{8}{3}}\times \frac{5}{2}
Express 15\left(-\frac{3}{4}\right) as a single fraction.
\frac{-45}{4}\sqrt{\frac{8}{3}}\times \frac{5}{2}
Multiply 15 and -3 to get -45.
-\frac{45}{4}\sqrt{\frac{8}{3}}\times \frac{5}{2}
Fraction \frac{-45}{4} can be rewritten as -\frac{45}{4} by extracting the negative sign.
-\frac{45}{4}\times \frac{\sqrt{8}}{\sqrt{3}}\times \frac{5}{2}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
-\frac{45}{4}\times \frac{2\sqrt{2}}{\sqrt{3}}\times \frac{5}{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-\frac{45}{4}\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{5}{2}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-\frac{45}{4}\times \frac{2\sqrt{2}\sqrt{3}}{3}\times \frac{5}{2}
The square of \sqrt{3} is 3.
-\frac{45}{4}\times \frac{2\sqrt{6}}{3}\times \frac{5}{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{-45\times 5}{4\times 2}\times \frac{2\sqrt{6}}{3}
Multiply -\frac{45}{4} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-225}{8}\times \frac{2\sqrt{6}}{3}
Do the multiplications in the fraction \frac{-45\times 5}{4\times 2}.
-\frac{225}{8}\times \frac{2\sqrt{6}}{3}
Fraction \frac{-225}{8} can be rewritten as -\frac{225}{8} by extracting the negative sign.
\frac{-225\times 2\sqrt{6}}{8\times 3}
Multiply -\frac{225}{8} times \frac{2\sqrt{6}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-75\sqrt{6}}{4}
Cancel out 2\times 3 in both numerator and denominator.