Solve for v
v = \frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
-\left(\frac{2}{3}v-\frac{4}{3}\right)\times 3=-6+2\left(v-2\right)
Variable v cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 2\left(v-2\right).
-\left(2v-4\right)=-6+2\left(v-2\right)
Use the distributive property to multiply \frac{2}{3}v-\frac{4}{3} by 3.
-2v+4=-6+2\left(v-2\right)
To find the opposite of 2v-4, find the opposite of each term.
-2v+4=-6+2v-4
Use the distributive property to multiply 2 by v-2.
-2v+4=-10+2v
Subtract 4 from -6 to get -10.
-2v+4-2v=-10
Subtract 2v from both sides.
-4v+4=-10
Combine -2v and -2v to get -4v.
-4v=-10-4
Subtract 4 from both sides.
-4v=-14
Subtract 4 from -10 to get -14.
v=\frac{-14}{-4}
Divide both sides by -4.
v=\frac{7}{2}
Reduce the fraction \frac{-14}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}