Solve for x
x = \frac{94}{31} = 3\frac{1}{31} \approx 3.032258065
Graph
Share
Copied to clipboard
-\frac{25}{3}x+\frac{100}{3}-2x=2
Subtract 2x from both sides.
-\frac{31}{3}x+\frac{100}{3}=2
Combine -\frac{25}{3}x and -2x to get -\frac{31}{3}x.
-\frac{31}{3}x=2-\frac{100}{3}
Subtract \frac{100}{3} from both sides.
-\frac{31}{3}x=\frac{6}{3}-\frac{100}{3}
Convert 2 to fraction \frac{6}{3}.
-\frac{31}{3}x=\frac{6-100}{3}
Since \frac{6}{3} and \frac{100}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{31}{3}x=-\frac{94}{3}
Subtract 100 from 6 to get -94.
x=-\frac{94}{3}\left(-\frac{3}{31}\right)
Multiply both sides by -\frac{3}{31}, the reciprocal of -\frac{31}{3}.
x=\frac{-94\left(-3\right)}{3\times 31}
Multiply -\frac{94}{3} times -\frac{3}{31} by multiplying numerator times numerator and denominator times denominator.
x=\frac{282}{93}
Do the multiplications in the fraction \frac{-94\left(-3\right)}{3\times 31}.
x=\frac{94}{31}
Reduce the fraction \frac{282}{93} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}