Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-\frac{2}{9}x^{3}\times 3}{2}x
Divide -\frac{2}{9}x^{3} by \frac{2}{3} by multiplying -\frac{2}{9}x^{3} by the reciprocal of \frac{2}{3}.
\frac{-\frac{2}{3}x^{3}}{2}x
Multiply -\frac{2}{9} and 3 to get -\frac{2}{3}.
-\frac{1}{3}x^{3}x
Divide -\frac{2}{3}x^{3} by 2 to get -\frac{1}{3}x^{3}.
-\frac{1}{3}x^{4}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{2}{9}x^{3}\times 3}{2}x)
Divide -\frac{2}{9}x^{3} by \frac{2}{3} by multiplying -\frac{2}{9}x^{3} by the reciprocal of \frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{2}{3}x^{3}}{2}x)
Multiply -\frac{2}{9} and 3 to get -\frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{1}{3}x^{3}x)
Divide -\frac{2}{3}x^{3} by 2 to get -\frac{1}{3}x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{1}{3}x^{4})
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
4\left(-\frac{1}{3}\right)x^{4-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{4}{3}x^{4-1}
Multiply 4 times -\frac{1}{3}.
-\frac{4}{3}x^{3}
Subtract 1 from 4.