Solve for x
x=30\sqrt{57}-300\approx -73.504966942
x=-30\sqrt{57}-300\approx -526.495033058
Graph
Share
Copied to clipboard
-\frac{2}{3}x^{2}-400x-25800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-400\right)±\sqrt{\left(-400\right)^{2}-4\left(-\frac{2}{3}\right)\left(-25800\right)}}{2\left(-\frac{2}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2}{3} for a, -400 for b, and -25800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-400\right)±\sqrt{160000-4\left(-\frac{2}{3}\right)\left(-25800\right)}}{2\left(-\frac{2}{3}\right)}
Square -400.
x=\frac{-\left(-400\right)±\sqrt{160000+\frac{8}{3}\left(-25800\right)}}{2\left(-\frac{2}{3}\right)}
Multiply -4 times -\frac{2}{3}.
x=\frac{-\left(-400\right)±\sqrt{160000-68800}}{2\left(-\frac{2}{3}\right)}
Multiply \frac{8}{3} times -25800.
x=\frac{-\left(-400\right)±\sqrt{91200}}{2\left(-\frac{2}{3}\right)}
Add 160000 to -68800.
x=\frac{-\left(-400\right)±40\sqrt{57}}{2\left(-\frac{2}{3}\right)}
Take the square root of 91200.
x=\frac{400±40\sqrt{57}}{2\left(-\frac{2}{3}\right)}
The opposite of -400 is 400.
x=\frac{400±40\sqrt{57}}{-\frac{4}{3}}
Multiply 2 times -\frac{2}{3}.
x=\frac{40\sqrt{57}+400}{-\frac{4}{3}}
Now solve the equation x=\frac{400±40\sqrt{57}}{-\frac{4}{3}} when ± is plus. Add 400 to 40\sqrt{57}.
x=-30\sqrt{57}-300
Divide 400+40\sqrt{57} by -\frac{4}{3} by multiplying 400+40\sqrt{57} by the reciprocal of -\frac{4}{3}.
x=\frac{400-40\sqrt{57}}{-\frac{4}{3}}
Now solve the equation x=\frac{400±40\sqrt{57}}{-\frac{4}{3}} when ± is minus. Subtract 40\sqrt{57} from 400.
x=30\sqrt{57}-300
Divide 400-40\sqrt{57} by -\frac{4}{3} by multiplying 400-40\sqrt{57} by the reciprocal of -\frac{4}{3}.
x=-30\sqrt{57}-300 x=30\sqrt{57}-300
The equation is now solved.
-\frac{2}{3}x^{2}-400x-25800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{2}{3}x^{2}-400x-25800-\left(-25800\right)=-\left(-25800\right)
Add 25800 to both sides of the equation.
-\frac{2}{3}x^{2}-400x=-\left(-25800\right)
Subtracting -25800 from itself leaves 0.
-\frac{2}{3}x^{2}-400x=25800
Subtract -25800 from 0.
\frac{-\frac{2}{3}x^{2}-400x}{-\frac{2}{3}}=\frac{25800}{-\frac{2}{3}}
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{400}{-\frac{2}{3}}\right)x=\frac{25800}{-\frac{2}{3}}
Dividing by -\frac{2}{3} undoes the multiplication by -\frac{2}{3}.
x^{2}+600x=\frac{25800}{-\frac{2}{3}}
Divide -400 by -\frac{2}{3} by multiplying -400 by the reciprocal of -\frac{2}{3}.
x^{2}+600x=-38700
Divide 25800 by -\frac{2}{3} by multiplying 25800 by the reciprocal of -\frac{2}{3}.
x^{2}+600x+300^{2}=-38700+300^{2}
Divide 600, the coefficient of the x term, by 2 to get 300. Then add the square of 300 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+600x+90000=-38700+90000
Square 300.
x^{2}+600x+90000=51300
Add -38700 to 90000.
\left(x+300\right)^{2}=51300
Factor x^{2}+600x+90000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+300\right)^{2}}=\sqrt{51300}
Take the square root of both sides of the equation.
x+300=30\sqrt{57} x+300=-30\sqrt{57}
Simplify.
x=30\sqrt{57}-300 x=-30\sqrt{57}-300
Subtract 300 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}