Verify
false
Share
Copied to clipboard
-\frac{2}{3}\left(\frac{12}{15}+\frac{8}{15}\right)=-\frac{2}{3}\times \frac{4}{5}-\frac{2}{3}\times \frac{-8}{15}
Least common multiple of 5 and 15 is 15. Convert \frac{4}{5} and \frac{8}{15} to fractions with denominator 15.
-\frac{2}{3}\times \frac{12+8}{15}=-\frac{2}{3}\times \frac{4}{5}-\frac{2}{3}\times \frac{-8}{15}
Since \frac{12}{15} and \frac{8}{15} have the same denominator, add them by adding their numerators.
-\frac{2}{3}\times \frac{20}{15}=-\frac{2}{3}\times \frac{4}{5}-\frac{2}{3}\times \frac{-8}{15}
Add 12 and 8 to get 20.
-\frac{2}{3}\times \frac{4}{3}=-\frac{2}{3}\times \frac{4}{5}-\frac{2}{3}\times \frac{-8}{15}
Reduce the fraction \frac{20}{15} to lowest terms by extracting and canceling out 5.
\frac{-2\times 4}{3\times 3}=-\frac{2}{3}\times \frac{4}{5}-\frac{2}{3}\times \frac{-8}{15}
Multiply -\frac{2}{3} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-8}{9}=-\frac{2}{3}\times \frac{4}{5}-\frac{2}{3}\times \frac{-8}{15}
Do the multiplications in the fraction \frac{-2\times 4}{3\times 3}.
-\frac{8}{9}=-\frac{2}{3}\times \frac{4}{5}-\frac{2}{3}\times \frac{-8}{15}
Fraction \frac{-8}{9} can be rewritten as -\frac{8}{9} by extracting the negative sign.
-\frac{8}{9}=\frac{-2\times 4}{3\times 5}-\frac{2}{3}\times \frac{-8}{15}
Multiply -\frac{2}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{8}{9}=\frac{-8}{15}-\frac{2}{3}\times \frac{-8}{15}
Do the multiplications in the fraction \frac{-2\times 4}{3\times 5}.
-\frac{8}{9}=-\frac{8}{15}-\frac{2}{3}\times \frac{-8}{15}
Fraction \frac{-8}{15} can be rewritten as -\frac{8}{15} by extracting the negative sign.
-\frac{8}{9}=-\frac{8}{15}-\frac{2}{3}\left(-\frac{8}{15}\right)
Fraction \frac{-8}{15} can be rewritten as -\frac{8}{15} by extracting the negative sign.
-\frac{8}{9}=-\frac{8}{15}+\frac{-2\left(-8\right)}{3\times 15}
Multiply -\frac{2}{3} times -\frac{8}{15} by multiplying numerator times numerator and denominator times denominator.
-\frac{8}{9}=-\frac{8}{15}+\frac{16}{45}
Do the multiplications in the fraction \frac{-2\left(-8\right)}{3\times 15}.
-\frac{8}{9}=-\frac{24}{45}+\frac{16}{45}
Least common multiple of 15 and 45 is 45. Convert -\frac{8}{15} and \frac{16}{45} to fractions with denominator 45.
-\frac{8}{9}=\frac{-24+16}{45}
Since -\frac{24}{45} and \frac{16}{45} have the same denominator, add them by adding their numerators.
-\frac{8}{9}=-\frac{8}{45}
Add -24 and 16 to get -8.
-\frac{40}{45}=-\frac{8}{45}
Least common multiple of 9 and 45 is 45. Convert -\frac{8}{9} and -\frac{8}{45} to fractions with denominator 45.
\text{false}
Compare -\frac{40}{45} and -\frac{8}{45}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}