Evaluate
\frac{5}{4}=1.25
Factor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
-\frac{1}{6}+\frac{8}{12}-\left(-\frac{9}{12}\right)\left(\frac{-15}{12}+\frac{27}{12}\right)
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
-\frac{1}{6}+\frac{2}{3}-\left(-\frac{9}{12}\right)\left(\frac{-15}{12}+\frac{27}{12}\right)
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
-\frac{1}{6}+\frac{4}{6}-\left(-\frac{9}{12}\right)\left(\frac{-15}{12}+\frac{27}{12}\right)
Least common multiple of 6 and 3 is 6. Convert -\frac{1}{6} and \frac{2}{3} to fractions with denominator 6.
\frac{-1+4}{6}-\left(-\frac{9}{12}\right)\left(\frac{-15}{12}+\frac{27}{12}\right)
Since -\frac{1}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{3}{6}-\left(-\frac{9}{12}\right)\left(\frac{-15}{12}+\frac{27}{12}\right)
Add -1 and 4 to get 3.
\frac{1}{2}-\left(-\frac{9}{12}\right)\left(\frac{-15}{12}+\frac{27}{12}\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{2}-\left(-\frac{3}{4}\left(\frac{-15}{12}+\frac{27}{12}\right)\right)
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{2}-\left(-\frac{3}{4}\left(-\frac{5}{4}+\frac{27}{12}\right)\right)
Reduce the fraction \frac{-15}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{2}-\left(-\frac{3}{4}\left(-\frac{5}{4}+\frac{9}{4}\right)\right)
Reduce the fraction \frac{27}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{2}-\left(-\frac{3}{4}\times \frac{-5+9}{4}\right)
Since -\frac{5}{4} and \frac{9}{4} have the same denominator, add them by adding their numerators.
\frac{1}{2}-\left(-\frac{3}{4}\times \frac{4}{4}\right)
Add -5 and 9 to get 4.
\frac{1}{2}-\left(-\frac{3}{4}\right)
Divide 4 by 4 to get 1.
\frac{1}{2}+\frac{3}{4}
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{2}{4}+\frac{3}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{2+3}{4}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{5}{4}
Add 2 and 3 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}