Skip to main content
Solve for x
Tick mark Image
Graph

Share

7208\left(-\frac{11\sqrt{15}+68}{53}\right)\left(\frac{33\sqrt{15}}{136}+\frac{3}{2}\right)+7208x=8427
Multiply both sides of the equation by 7208, the least common multiple of 53,136,2.
7208\left(-\frac{11\sqrt{15}+68}{53}\right)\left(\frac{33\sqrt{15}}{136}+\frac{3\times 68}{136}\right)+7208x=8427
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 136 and 2 is 136. Multiply \frac{3}{2} times \frac{68}{68}.
7208\left(-\frac{11\sqrt{15}+68}{53}\right)\times \frac{33\sqrt{15}+3\times 68}{136}+7208x=8427
Since \frac{33\sqrt{15}}{136} and \frac{3\times 68}{136} have the same denominator, add them by adding their numerators.
7208\left(-\frac{11\sqrt{15}+68}{53}\right)\times \frac{33\sqrt{15}+204}{136}+7208x=8427
Do the multiplications in 33\sqrt{15}+3\times 68.
-136\left(11\sqrt{15}+68\right)\times \frac{33\sqrt{15}+204}{136}+7208x=8427
Cancel out 53, the greatest common factor in 7208 and 53.
\frac{-136\left(11\sqrt{15}+68\right)\left(33\sqrt{15}+204\right)}{136}+7208x=8427
Express -136\left(11\sqrt{15}+68\right)\times \frac{33\sqrt{15}+204}{136} as a single fraction.
-\left(11\sqrt{15}+68\right)\left(33\sqrt{15}+204\right)+7208x=8427
Cancel out 136 and 136.
\left(-11\sqrt{15}-68\right)\left(33\sqrt{15}+204\right)+7208x=8427
Use the distributive property to multiply -1 by 11\sqrt{15}+68.
-363\left(\sqrt{15}\right)^{2}-2244\sqrt{15}-2244\sqrt{15}-13872+7208x=8427
Apply the distributive property by multiplying each term of -11\sqrt{15}-68 by each term of 33\sqrt{15}+204.
-363\times 15-2244\sqrt{15}-2244\sqrt{15}-13872+7208x=8427
The square of \sqrt{15} is 15.
-5445-2244\sqrt{15}-2244\sqrt{15}-13872+7208x=8427
Multiply -363 and 15 to get -5445.
-5445-4488\sqrt{15}-13872+7208x=8427
Combine -2244\sqrt{15} and -2244\sqrt{15} to get -4488\sqrt{15}.
-19317-4488\sqrt{15}+7208x=8427
Subtract 13872 from -5445 to get -19317.
-4488\sqrt{15}+7208x=8427+19317
Add 19317 to both sides.
-4488\sqrt{15}+7208x=27744
Add 8427 and 19317 to get 27744.
7208x=27744+4488\sqrt{15}
Add 4488\sqrt{15} to both sides.
7208x=4488\sqrt{15}+27744
The equation is in standard form.
\frac{7208x}{7208}=\frac{4488\sqrt{15}+27744}{7208}
Divide both sides by 7208.
x=\frac{4488\sqrt{15}+27744}{7208}
Dividing by 7208 undoes the multiplication by 7208.
x=\frac{33\sqrt{15}+204}{53}
Divide 27744+4488\sqrt{15} by 7208.