Evaluate
256.1845
Factor
\frac{11 \cdot 13 \cdot 3583}{2 ^ {4} \cdot 5 ^ {3}} = 256\frac{369}{2000} = 256.1845
Share
Copied to clipboard
-\frac{13}{12}\left(67-217+0.00203\left(67^{2}-217^{2}\right)\right)
Expand \frac{1.3}{1.2} by multiplying both numerator and the denominator by 10.
-\frac{13}{12}\left(-150+0.00203\left(67^{2}-217^{2}\right)\right)
Subtract 217 from 67 to get -150.
-\frac{13}{12}\left(-150+0.00203\left(4489-217^{2}\right)\right)
Calculate 67 to the power of 2 and get 4489.
-\frac{13}{12}\left(-150+0.00203\left(4489-47089\right)\right)
Calculate 217 to the power of 2 and get 47089.
-\frac{13}{12}\left(-150+0.00203\left(-42600\right)\right)
Subtract 47089 from 4489 to get -42600.
-\frac{13}{12}\left(-150-86.478\right)
Multiply 0.00203 and -42600 to get -86.478.
-\frac{13}{12}\left(-236.478\right)
Subtract 86.478 from -150 to get -236.478.
-\frac{13}{12}\left(-\frac{118239}{500}\right)
Convert decimal number -236.478 to fraction -\frac{236478}{1000}. Reduce the fraction -\frac{236478}{1000} to lowest terms by extracting and canceling out 2.
\frac{-13\left(-118239\right)}{12\times 500}
Multiply -\frac{13}{12} times -\frac{118239}{500} by multiplying numerator times numerator and denominator times denominator.
\frac{1537107}{6000}
Do the multiplications in the fraction \frac{-13\left(-118239\right)}{12\times 500}.
\frac{512369}{2000}
Reduce the fraction \frac{1537107}{6000} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}