Solve for m
m=-1
m=3
Share
Copied to clipboard
-3=-m\left(m-2\right)
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3m, the least common multiple of m,3.
-3=-\left(m^{2}-2m\right)
Use the distributive property to multiply m by m-2.
-3=-m^{2}-\left(-2m\right)
To find the opposite of m^{2}-2m, find the opposite of each term.
-3=-m^{2}+2m
The opposite of -2m is 2m.
-m^{2}+2m=-3
Swap sides so that all variable terms are on the left hand side.
-m^{2}+2m+3=0
Add 3 to both sides.
m=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square 2.
m=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
m=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Multiply 4 times 3.
m=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Add 4 to 12.
m=\frac{-2±4}{2\left(-1\right)}
Take the square root of 16.
m=\frac{-2±4}{-2}
Multiply 2 times -1.
m=\frac{2}{-2}
Now solve the equation m=\frac{-2±4}{-2} when ± is plus. Add -2 to 4.
m=-1
Divide 2 by -2.
m=-\frac{6}{-2}
Now solve the equation m=\frac{-2±4}{-2} when ± is minus. Subtract 4 from -2.
m=3
Divide -6 by -2.
m=-1 m=3
The equation is now solved.
-3=-m\left(m-2\right)
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3m, the least common multiple of m,3.
-3=-\left(m^{2}-2m\right)
Use the distributive property to multiply m by m-2.
-3=-m^{2}-\left(-2m\right)
To find the opposite of m^{2}-2m, find the opposite of each term.
-3=-m^{2}+2m
The opposite of -2m is 2m.
-m^{2}+2m=-3
Swap sides so that all variable terms are on the left hand side.
\frac{-m^{2}+2m}{-1}=-\frac{3}{-1}
Divide both sides by -1.
m^{2}+\frac{2}{-1}m=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
m^{2}-2m=-\frac{3}{-1}
Divide 2 by -1.
m^{2}-2m=3
Divide -3 by -1.
m^{2}-2m+1=3+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-2m+1=4
Add 3 to 1.
\left(m-1\right)^{2}=4
Factor m^{2}-2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
m-1=2 m-1=-2
Simplify.
m=3 m=-1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}