Solve for x
x=-4
x=16
Graph
Quiz
Quadratic Equation
5 problems similar to:
- \frac{ 1 }{ 8 } { x }^{ 2 } + \frac{ 1 }{ 2 } x+4 = -x-4
Share
Copied to clipboard
-\frac{1}{8}x^{2}+\frac{1}{2}x+4+x=-4
Add x to both sides.
-\frac{1}{8}x^{2}+\frac{3}{2}x+4=-4
Combine \frac{1}{2}x and x to get \frac{3}{2}x.
-\frac{1}{8}x^{2}+\frac{3}{2}x+4+4=0
Add 4 to both sides.
-\frac{1}{8}x^{2}+\frac{3}{2}x+8=0
Add 4 and 4 to get 8.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{1}{8}\right)\times 8}}{2\left(-\frac{1}{8}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{8} for a, \frac{3}{2} for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{1}{8}\right)\times 8}}{2\left(-\frac{1}{8}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+\frac{1}{2}\times 8}}{2\left(-\frac{1}{8}\right)}
Multiply -4 times -\frac{1}{8}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+4}}{2\left(-\frac{1}{8}\right)}
Multiply \frac{1}{2} times 8.
x=\frac{-\frac{3}{2}±\sqrt{\frac{25}{4}}}{2\left(-\frac{1}{8}\right)}
Add \frac{9}{4} to 4.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{2\left(-\frac{1}{8}\right)}
Take the square root of \frac{25}{4}.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{4}}
Multiply 2 times -\frac{1}{8}.
x=\frac{1}{-\frac{1}{4}}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{4}} when ± is plus. Add -\frac{3}{2} to \frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-4
Divide 1 by -\frac{1}{4} by multiplying 1 by the reciprocal of -\frac{1}{4}.
x=-\frac{4}{-\frac{1}{4}}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{4}} when ± is minus. Subtract \frac{5}{2} from -\frac{3}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=16
Divide -4 by -\frac{1}{4} by multiplying -4 by the reciprocal of -\frac{1}{4}.
x=-4 x=16
The equation is now solved.
-\frac{1}{8}x^{2}+\frac{1}{2}x+4+x=-4
Add x to both sides.
-\frac{1}{8}x^{2}+\frac{3}{2}x+4=-4
Combine \frac{1}{2}x and x to get \frac{3}{2}x.
-\frac{1}{8}x^{2}+\frac{3}{2}x=-4-4
Subtract 4 from both sides.
-\frac{1}{8}x^{2}+\frac{3}{2}x=-8
Subtract 4 from -4 to get -8.
\frac{-\frac{1}{8}x^{2}+\frac{3}{2}x}{-\frac{1}{8}}=-\frac{8}{-\frac{1}{8}}
Multiply both sides by -8.
x^{2}+\frac{\frac{3}{2}}{-\frac{1}{8}}x=-\frac{8}{-\frac{1}{8}}
Dividing by -\frac{1}{8} undoes the multiplication by -\frac{1}{8}.
x^{2}-12x=-\frac{8}{-\frac{1}{8}}
Divide \frac{3}{2} by -\frac{1}{8} by multiplying \frac{3}{2} by the reciprocal of -\frac{1}{8}.
x^{2}-12x=64
Divide -8 by -\frac{1}{8} by multiplying -8 by the reciprocal of -\frac{1}{8}.
x^{2}-12x+\left(-6\right)^{2}=64+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=64+36
Square -6.
x^{2}-12x+36=100
Add 64 to 36.
\left(x-6\right)^{2}=100
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x-6=10 x-6=-10
Simplify.
x=16 x=-4
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}