Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{7}x+\frac{3}{7}=-\frac{4}{3}\left(x^{2}-2x+1\right)+\frac{16}{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-\frac{1}{7}x+\frac{3}{7}=-\frac{4}{3}x^{2}+\frac{8}{3}x-\frac{4}{3}+\frac{16}{3}
Use the distributive property to multiply -\frac{4}{3} by x^{2}-2x+1.
-\frac{1}{7}x+\frac{3}{7}=-\frac{4}{3}x^{2}+\frac{8}{3}x+4
Add -\frac{4}{3} and \frac{16}{3} to get 4.
-\frac{1}{7}x+\frac{3}{7}+\frac{4}{3}x^{2}=\frac{8}{3}x+4
Add \frac{4}{3}x^{2} to both sides.
-\frac{1}{7}x+\frac{3}{7}+\frac{4}{3}x^{2}-\frac{8}{3}x=4
Subtract \frac{8}{3}x from both sides.
-\frac{59}{21}x+\frac{3}{7}+\frac{4}{3}x^{2}=4
Combine -\frac{1}{7}x and -\frac{8}{3}x to get -\frac{59}{21}x.
-\frac{59}{21}x+\frac{3}{7}+\frac{4}{3}x^{2}-4=0
Subtract 4 from both sides.
-\frac{59}{21}x-\frac{25}{7}+\frac{4}{3}x^{2}=0
Subtract 4 from \frac{3}{7} to get -\frac{25}{7}.
\frac{4}{3}x^{2}-\frac{59}{21}x-\frac{25}{7}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{59}{21}\right)±\sqrt{\left(-\frac{59}{21}\right)^{2}-4\times \frac{4}{3}\left(-\frac{25}{7}\right)}}{2\times \frac{4}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{3} for a, -\frac{59}{21} for b, and -\frac{25}{7} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{59}{21}\right)±\sqrt{\frac{3481}{441}-4\times \frac{4}{3}\left(-\frac{25}{7}\right)}}{2\times \frac{4}{3}}
Square -\frac{59}{21} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{59}{21}\right)±\sqrt{\frac{3481}{441}-\frac{16}{3}\left(-\frac{25}{7}\right)}}{2\times \frac{4}{3}}
Multiply -4 times \frac{4}{3}.
x=\frac{-\left(-\frac{59}{21}\right)±\sqrt{\frac{3481}{441}+\frac{400}{21}}}{2\times \frac{4}{3}}
Multiply -\frac{16}{3} times -\frac{25}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{59}{21}\right)±\sqrt{\frac{11881}{441}}}{2\times \frac{4}{3}}
Add \frac{3481}{441} to \frac{400}{21} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{59}{21}\right)±\frac{109}{21}}{2\times \frac{4}{3}}
Take the square root of \frac{11881}{441}.
x=\frac{\frac{59}{21}±\frac{109}{21}}{2\times \frac{4}{3}}
The opposite of -\frac{59}{21} is \frac{59}{21}.
x=\frac{\frac{59}{21}±\frac{109}{21}}{\frac{8}{3}}
Multiply 2 times \frac{4}{3}.
x=\frac{8}{\frac{8}{3}}
Now solve the equation x=\frac{\frac{59}{21}±\frac{109}{21}}{\frac{8}{3}} when ± is plus. Add \frac{59}{21} to \frac{109}{21} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3
Divide 8 by \frac{8}{3} by multiplying 8 by the reciprocal of \frac{8}{3}.
x=-\frac{\frac{50}{21}}{\frac{8}{3}}
Now solve the equation x=\frac{\frac{59}{21}±\frac{109}{21}}{\frac{8}{3}} when ± is minus. Subtract \frac{109}{21} from \frac{59}{21} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{25}{28}
Divide -\frac{50}{21} by \frac{8}{3} by multiplying -\frac{50}{21} by the reciprocal of \frac{8}{3}.
x=3 x=-\frac{25}{28}
The equation is now solved.
-\frac{1}{7}x+\frac{3}{7}=-\frac{4}{3}\left(x^{2}-2x+1\right)+\frac{16}{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-\frac{1}{7}x+\frac{3}{7}=-\frac{4}{3}x^{2}+\frac{8}{3}x-\frac{4}{3}+\frac{16}{3}
Use the distributive property to multiply -\frac{4}{3} by x^{2}-2x+1.
-\frac{1}{7}x+\frac{3}{7}=-\frac{4}{3}x^{2}+\frac{8}{3}x+4
Add -\frac{4}{3} and \frac{16}{3} to get 4.
-\frac{1}{7}x+\frac{3}{7}+\frac{4}{3}x^{2}=\frac{8}{3}x+4
Add \frac{4}{3}x^{2} to both sides.
-\frac{1}{7}x+\frac{3}{7}+\frac{4}{3}x^{2}-\frac{8}{3}x=4
Subtract \frac{8}{3}x from both sides.
-\frac{59}{21}x+\frac{3}{7}+\frac{4}{3}x^{2}=4
Combine -\frac{1}{7}x and -\frac{8}{3}x to get -\frac{59}{21}x.
-\frac{59}{21}x+\frac{4}{3}x^{2}=4-\frac{3}{7}
Subtract \frac{3}{7} from both sides.
-\frac{59}{21}x+\frac{4}{3}x^{2}=\frac{25}{7}
Subtract \frac{3}{7} from 4 to get \frac{25}{7}.
\frac{4}{3}x^{2}-\frac{59}{21}x=\frac{25}{7}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{4}{3}x^{2}-\frac{59}{21}x}{\frac{4}{3}}=\frac{\frac{25}{7}}{\frac{4}{3}}
Divide both sides of the equation by \frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{59}{21}}{\frac{4}{3}}\right)x=\frac{\frac{25}{7}}{\frac{4}{3}}
Dividing by \frac{4}{3} undoes the multiplication by \frac{4}{3}.
x^{2}-\frac{59}{28}x=\frac{\frac{25}{7}}{\frac{4}{3}}
Divide -\frac{59}{21} by \frac{4}{3} by multiplying -\frac{59}{21} by the reciprocal of \frac{4}{3}.
x^{2}-\frac{59}{28}x=\frac{75}{28}
Divide \frac{25}{7} by \frac{4}{3} by multiplying \frac{25}{7} by the reciprocal of \frac{4}{3}.
x^{2}-\frac{59}{28}x+\left(-\frac{59}{56}\right)^{2}=\frac{75}{28}+\left(-\frac{59}{56}\right)^{2}
Divide -\frac{59}{28}, the coefficient of the x term, by 2 to get -\frac{59}{56}. Then add the square of -\frac{59}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{59}{28}x+\frac{3481}{3136}=\frac{75}{28}+\frac{3481}{3136}
Square -\frac{59}{56} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{59}{28}x+\frac{3481}{3136}=\frac{11881}{3136}
Add \frac{75}{28} to \frac{3481}{3136} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{59}{56}\right)^{2}=\frac{11881}{3136}
Factor x^{2}-\frac{59}{28}x+\frac{3481}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{56}\right)^{2}}=\sqrt{\frac{11881}{3136}}
Take the square root of both sides of the equation.
x-\frac{59}{56}=\frac{109}{56} x-\frac{59}{56}=-\frac{109}{56}
Simplify.
x=3 x=-\frac{25}{28}
Add \frac{59}{56} to both sides of the equation.