Evaluate
-\frac{1}{120}\approx -0.008333333
Factor
-\frac{1}{120} = -0.008333333333333333
Share
Copied to clipboard
\frac{-1}{60\times 32}+\frac{1}{24}\times \frac{1}{8}-\frac{5}{192}\times \frac{1}{2}
Multiply -\frac{1}{60} times \frac{1}{32} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{1920}+\frac{1}{24}\times \frac{1}{8}-\frac{5}{192}\times \frac{1}{2}
Do the multiplications in the fraction \frac{-1}{60\times 32}.
-\frac{1}{1920}+\frac{1}{24}\times \frac{1}{8}-\frac{5}{192}\times \frac{1}{2}
Fraction \frac{-1}{1920} can be rewritten as -\frac{1}{1920} by extracting the negative sign.
-\frac{1}{1920}+\frac{1\times 1}{24\times 8}-\frac{5}{192}\times \frac{1}{2}
Multiply \frac{1}{24} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{1920}+\frac{1}{192}-\frac{5}{192}\times \frac{1}{2}
Do the multiplications in the fraction \frac{1\times 1}{24\times 8}.
-\frac{1}{1920}+\frac{10}{1920}-\frac{5}{192}\times \frac{1}{2}
Least common multiple of 1920 and 192 is 1920. Convert -\frac{1}{1920} and \frac{1}{192} to fractions with denominator 1920.
\frac{-1+10}{1920}-\frac{5}{192}\times \frac{1}{2}
Since -\frac{1}{1920} and \frac{10}{1920} have the same denominator, add them by adding their numerators.
\frac{9}{1920}-\frac{5}{192}\times \frac{1}{2}
Add -1 and 10 to get 9.
\frac{3}{640}-\frac{5}{192}\times \frac{1}{2}
Reduce the fraction \frac{9}{1920} to lowest terms by extracting and canceling out 3.
\frac{3}{640}-\frac{5\times 1}{192\times 2}
Multiply \frac{5}{192} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{640}-\frac{5}{384}
Do the multiplications in the fraction \frac{5\times 1}{192\times 2}.
\frac{9}{1920}-\frac{25}{1920}
Least common multiple of 640 and 384 is 1920. Convert \frac{3}{640} and \frac{5}{384} to fractions with denominator 1920.
\frac{9-25}{1920}
Since \frac{9}{1920} and \frac{25}{1920} have the same denominator, subtract them by subtracting their numerators.
\frac{-16}{1920}
Subtract 25 from 9 to get -16.
-\frac{1}{120}
Reduce the fraction \frac{-16}{1920} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}