Solve for x
x=\frac{\sqrt{10}}{10}+2\approx 2.316227766
x=-\frac{\sqrt{10}}{10}+2\approx 1.683772234
Graph
Share
Copied to clipboard
-\frac{1}{6}x^{2}+\frac{2}{3}x-0.65=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-\frac{1}{6}\right)\left(-0.65\right)}}{2\left(-\frac{1}{6}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{6} for a, \frac{2}{3} for b, and -0.65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-\frac{1}{6}\right)\left(-0.65\right)}}{2\left(-\frac{1}{6}\right)}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+\frac{2}{3}\left(-0.65\right)}}{2\left(-\frac{1}{6}\right)}
Multiply -4 times -\frac{1}{6}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-\frac{13}{30}}}{2\left(-\frac{1}{6}\right)}
Multiply \frac{2}{3} times -0.65 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{3}±\sqrt{\frac{1}{90}}}{2\left(-\frac{1}{6}\right)}
Add \frac{4}{9} to -\frac{13}{30} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{30}}{2\left(-\frac{1}{6}\right)}
Take the square root of \frac{1}{90}.
x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{30}}{-\frac{1}{3}}
Multiply 2 times -\frac{1}{6}.
x=\frac{\frac{\sqrt{10}}{30}-\frac{2}{3}}{-\frac{1}{3}}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{30}}{-\frac{1}{3}} when ± is plus. Add -\frac{2}{3} to \frac{\sqrt{10}}{30}.
x=-\frac{\sqrt{10}}{10}+2
Divide -\frac{2}{3}+\frac{\sqrt{10}}{30} by -\frac{1}{3} by multiplying -\frac{2}{3}+\frac{\sqrt{10}}{30} by the reciprocal of -\frac{1}{3}.
x=\frac{-\frac{\sqrt{10}}{30}-\frac{2}{3}}{-\frac{1}{3}}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{30}}{-\frac{1}{3}} when ± is minus. Subtract \frac{\sqrt{10}}{30} from -\frac{2}{3}.
x=\frac{\sqrt{10}}{10}+2
Divide -\frac{2}{3}-\frac{\sqrt{10}}{30} by -\frac{1}{3} by multiplying -\frac{2}{3}-\frac{\sqrt{10}}{30} by the reciprocal of -\frac{1}{3}.
x=-\frac{\sqrt{10}}{10}+2 x=\frac{\sqrt{10}}{10}+2
The equation is now solved.
-\frac{1}{6}x^{2}+\frac{2}{3}x-0.65=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{6}x^{2}+\frac{2}{3}x-0.65-\left(-0.65\right)=-\left(-0.65\right)
Add 0.65 to both sides of the equation.
-\frac{1}{6}x^{2}+\frac{2}{3}x=-\left(-0.65\right)
Subtracting -0.65 from itself leaves 0.
-\frac{1}{6}x^{2}+\frac{2}{3}x=0.65
Subtract -0.65 from 0.
\frac{-\frac{1}{6}x^{2}+\frac{2}{3}x}{-\frac{1}{6}}=\frac{0.65}{-\frac{1}{6}}
Multiply both sides by -6.
x^{2}+\frac{\frac{2}{3}}{-\frac{1}{6}}x=\frac{0.65}{-\frac{1}{6}}
Dividing by -\frac{1}{6} undoes the multiplication by -\frac{1}{6}.
x^{2}-4x=\frac{0.65}{-\frac{1}{6}}
Divide \frac{2}{3} by -\frac{1}{6} by multiplying \frac{2}{3} by the reciprocal of -\frac{1}{6}.
x^{2}-4x=-\frac{39}{10}
Divide 0.65 by -\frac{1}{6} by multiplying 0.65 by the reciprocal of -\frac{1}{6}.
x^{2}-4x+\left(-2\right)^{2}=-\frac{39}{10}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{39}{10}+4
Square -2.
x^{2}-4x+4=\frac{1}{10}
Add -\frac{39}{10} to 4.
\left(x-2\right)^{2}=\frac{1}{10}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{1}{10}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{10}}{10} x-2=-\frac{\sqrt{10}}{10}
Simplify.
x=\frac{\sqrt{10}}{10}+2 x=-\frac{\sqrt{10}}{10}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}