Factor
-\frac{x\left(x+4\right)^{2}}{5}
Evaluate
-\frac{x\left(x+4\right)^{2}}{5}
Graph
Share
Copied to clipboard
\frac{-x^{3}-8x^{2}-16x}{5}
Factor out \frac{1}{5}.
x\left(-x^{2}-8x-16\right)
Consider -x^{3}-8x^{2}-16x. Factor out x.
a+b=-8 ab=-\left(-16\right)=16
Consider -x^{2}-8x-16. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
-1,-16 -2,-8 -4,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 16.
-1-16=-17 -2-8=-10 -4-4=-8
Calculate the sum for each pair.
a=-4 b=-4
The solution is the pair that gives sum -8.
\left(-x^{2}-4x\right)+\left(-4x-16\right)
Rewrite -x^{2}-8x-16 as \left(-x^{2}-4x\right)+\left(-4x-16\right).
-x\left(x+4\right)-4\left(x+4\right)
Factor out -x in the first and -4 in the second group.
\left(x+4\right)\left(-x-4\right)
Factor out common term x+4 by using distributive property.
\frac{x\left(x+4\right)\left(-x-4\right)}{5}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}