Evaluate
\frac{709}{300}\approx 2.363333333
Factor
\frac{709}{2 ^ {2} \cdot 3 \cdot 5 ^ {2}} = 2\frac{109}{300} = 2.3633333333333333
Share
Copied to clipboard
-\frac{1}{4}+\left(\frac{25}{15}+\frac{24}{15}\right)\times \frac{4}{5}
Least common multiple of 3 and 5 is 15. Convert \frac{5}{3} and \frac{8}{5} to fractions with denominator 15.
-\frac{1}{4}+\frac{25+24}{15}\times \frac{4}{5}
Since \frac{25}{15} and \frac{24}{15} have the same denominator, add them by adding their numerators.
-\frac{1}{4}+\frac{49}{15}\times \frac{4}{5}
Add 25 and 24 to get 49.
-\frac{1}{4}+\frac{49\times 4}{15\times 5}
Multiply \frac{49}{15} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{4}+\frac{196}{75}
Do the multiplications in the fraction \frac{49\times 4}{15\times 5}.
-\frac{75}{300}+\frac{784}{300}
Least common multiple of 4 and 75 is 300. Convert -\frac{1}{4} and \frac{196}{75} to fractions with denominator 300.
\frac{-75+784}{300}
Since -\frac{75}{300} and \frac{784}{300} have the same denominator, add them by adding their numerators.
\frac{709}{300}
Add -75 and 784 to get 709.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}