Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-x^{4}+16}{4}
Factor out \frac{1}{4}.
\left(4+x^{2}\right)\left(4-x^{2}\right)
Consider -x^{4}+16. Rewrite -x^{4}+16 as 4^{2}-\left(-x^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}+4\right)\left(-x^{2}+4\right)
Reorder the terms.
\left(2-x\right)\left(2+x\right)
Consider -x^{2}+4. Rewrite -x^{2}+4 as 2^{2}-x^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-x+2\right)\left(x+2\right)
Reorder the terms.
\frac{\left(x^{2}+4\right)\left(-x+2\right)\left(x+2\right)}{4}
Rewrite the complete factored expression. Polynomial x^{2}+4 is not factored since it does not have any rational roots.